Skip to main content
Erschienen in: Journal of Materials Science 3/2018

26.10.2017 | Ceramics

Effect of calcination temperature on structure and thermoelectric properties of CuAlO2 powders

verfasst von: Cesia Guarneros Aguilar, Carolina Estrada Moreno, Mauricio Pacio Castillo, Felipe Caballero-Briones

Erschienen in: Journal of Materials Science | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Copper aluminum oxide (CuAlO2) with delafossite phase was synthesized by the Pechini method using different calcination temperatures to evaluate its influence on the structure and thermoelectric material properties. X-ray diffraction and Raman spectroscopy confirm that delafossite phase was formed at 1100 °C with the presence of 2H-CuAlO2 and Al2O3 impurities, while at lower calcination temperatures (900 and 1000 °C), a mixture of CuO + CuAl2O4 (spinel phase) was observed. Energy-dispersive X-ray elemental maps display an even distribution of copper, aluminum and oxygen in the sample calcined at 1100 °C. Direct optical band gap, E g = 3.6 eV, was calculated from reflectance diffuse spectra by Kubelka–Munk and Tauc methods. An absorption band at 1.7 eV accounts for defect levels, masking the characteristic indirect transition. The thermoelectric properties, such as Seebeck coefficient, and thermal and electrical conductivities of the sample calcined at 1100 °C were measured at different temperatures. Hall voltage and positive values of the Seebeck coefficient (425.8–434.4 µV K−1) confirm the material’s p-type character. The independence of the Seebeck coefficient on the operation temperature indicates a small polaron electrical conduction mechanism. Thermal conductivity decreases exponentially with the temperature from 43.45 to 23.9 W m−1 K−1, where the principal contribution is due to phonons. Figure of merit ZT of sample calcined at 1100 °C between 100 and 800 °C increases from 1.42 × 10−8 to 4.94 × 10−4 in the order of the literature reports. From the Arrhenius plot ln(σT) versus 1000/T, an activation energy E a = 0.32 eV for the electrical conductivity was calculated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Shakouri A (2011) Recent developments in semiconductor thermoelectric physics and materials. Annu Rev Mater Res 41:399–431CrossRef Shakouri A (2011) Recent developments in semiconductor thermoelectric physics and materials. Annu Rev Mater Res 41:399–431CrossRef
2.
Zurück zum Zitat Li J-F, Liu W-S, Zhao L-D, Zhou M (2010) High-performance nanostructured thermoelectric materials. NPG Asia Mater 2:152–158CrossRef Li J-F, Liu W-S, Zhao L-D, Zhou M (2010) High-performance nanostructured thermoelectric materials. NPG Asia Mater 2:152–158CrossRef
3.
Zurück zum Zitat Tritt TM, Subramanian MA (2006) Thermoelectric materials, phenomena and applications: a bird’s eye view. MRS Bull 31:188–189CrossRef Tritt TM, Subramanian MA (2006) Thermoelectric materials, phenomena and applications: a bird’s eye view. MRS Bull 31:188–189CrossRef
4.
Zurück zum Zitat Gould C, Shammas N (2009) A review of thermoelectric MEMS devices for micro-power generation, heating and cooling applications. In: Takahata K (ed) Micro electronic and mechanical systems. INTECH, Croatia, pp 15–24 Gould C, Shammas N (2009) A review of thermoelectric MEMS devices for micro-power generation, heating and cooling applications. In: Takahata K (ed) Micro electronic and mechanical systems. INTECH, Croatia, pp 15–24
5.
Zurück zum Zitat Ren G, Lan J, Zeng C, Liu Y, Zhan B, Butt S, Lin Y-H, Nan C-W (2015) High performance oxides-based thermoelectric materials. JOM 67:211–221CrossRef Ren G, Lan J, Zeng C, Liu Y, Zhan B, Butt S, Lin Y-H, Nan C-W (2015) High performance oxides-based thermoelectric materials. JOM 67:211–221CrossRef
6.
Zurück zum Zitat Zhao L-D, Lo S-H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid VP, Kanatzidis MG (2014) Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508:373–377CrossRef Zhao L-D, Lo S-H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid VP, Kanatzidis MG (2014) Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508:373–377CrossRef
7.
Zurück zum Zitat Kieslich G, Cerretti G, Veremchuk I, Hermann RP, Panthöfer M, Grin J, Tremel W (2016) A chemists view: metal oxides with adaptive structures for thermoelectric applications. Phys Status Solidi A 213:808–823CrossRef Kieslich G, Cerretti G, Veremchuk I, Hermann RP, Panthöfer M, Grin J, Tremel W (2016) A chemists view: metal oxides with adaptive structures for thermoelectric applications. Phys Status Solidi A 213:808–823CrossRef
8.
Zurück zum Zitat Walia S, Balendhran S, Nili H, Zhuiykov S, Rosengarten G, Wang QH, Bhaskaran M, Sriram S, Strano MS, Kalantar-zadeh K (2013) Transition metal oxides—thermoelectric properties. Prog Mater Sci 58:1443–1489CrossRef Walia S, Balendhran S, Nili H, Zhuiykov S, Rosengarten G, Wang QH, Bhaskaran M, Sriram S, Strano MS, Kalantar-zadeh K (2013) Transition metal oxides—thermoelectric properties. Prog Mater Sci 58:1443–1489CrossRef
9.
Zurück zum Zitat Benko FA, Koffyberg FP (1984) Opto-electronic properties of CuAlO2. J Phys Chem Sol 45:57–59CrossRef Benko FA, Koffyberg FP (1984) Opto-electronic properties of CuAlO2. J Phys Chem Sol 45:57–59CrossRef
10.
Zurück zum Zitat Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H (1997) P-type electrical conduction in transparent thin films of CuAlO2. Nature 389:939–942CrossRef Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H (1997) P-type electrical conduction in transparent thin films of CuAlO2. Nature 389:939–942CrossRef
11.
Zurück zum Zitat Pellicer-Porres J, Segura A, Gilliland AS, Muñoz A, Rodríguez-Hernández P, Kim D, Lee MS, Kim TY (2006) On the band gap of CuAlO2 delafossite. Appl Phys Lett 88:181904CrossRef Pellicer-Porres J, Segura A, Gilliland AS, Muñoz A, Rodríguez-Hernández P, Kim D, Lee MS, Kim TY (2006) On the band gap of CuAlO2 delafossite. Appl Phys Lett 88:181904CrossRef
12.
Zurück zum Zitat Brahimi R, Bellal B, Bessekhouad Y, Bouguelia A, Trari M (2008) Physical properties of CuAlO2 single crystal. J Cryst Growth 310:4325–4329CrossRef Brahimi R, Bellal B, Bessekhouad Y, Bouguelia A, Trari M (2008) Physical properties of CuAlO2 single crystal. J Cryst Growth 310:4325–4329CrossRef
13.
Zurück zum Zitat Zhang KHL, Xi K, Blamire MG, Egdell RG (2016) P-type transparent conducting oxides. J Phys Condens Matter 28:383002CrossRef Zhang KHL, Xi K, Blamire MG, Egdell RG (2016) P-type transparent conducting oxides. J Phys Condens Matter 28:383002CrossRef
14.
Zurück zum Zitat Yanagi H, Inoue S, Ueda K, Kawazoe H, Hosono H (2000) Electronic structure and optoelectronic properties of transparent p-type conducting CuAlO2. J Appl Phys 88:4159–4163CrossRef Yanagi H, Inoue S, Ueda K, Kawazoe H, Hosono H (2000) Electronic structure and optoelectronic properties of transparent p-type conducting CuAlO2. J Appl Phys 88:4159–4163CrossRef
15.
Zurück zum Zitat Lu Y, Nozue T, Feng N, Sagara K, Yoshida H, Jin Y (2015) Fabrication of thermoelectric CuAlO2 and performance enhancement by high density. J Alloys Compd 650:558–563CrossRef Lu Y, Nozue T, Feng N, Sagara K, Yoshida H, Jin Y (2015) Fabrication of thermoelectric CuAlO2 and performance enhancement by high density. J Alloys Compd 650:558–563CrossRef
16.
Zurück zum Zitat Suriwong T, Thongtem T, Thongtem S (2014) Thermoelectric and optical properties of CuAlO2 synthesized by direct microwave heating. Curr Appl Phys 14:1257–1262CrossRef Suriwong T, Thongtem T, Thongtem S (2014) Thermoelectric and optical properties of CuAlO2 synthesized by direct microwave heating. Curr Appl Phys 14:1257–1262CrossRef
17.
Zurück zum Zitat Huda MN, Yan Y, Walsh A, Wei S-H, Al-Jassim MM (2009) Group-IIIA versus IIIB delafossites: electronic structure study. Phys Rev B 80(035205):1–7 Huda MN, Yan Y, Walsh A, Wei S-H, Al-Jassim MM (2009) Group-IIIA versus IIIB delafossites: electronic structure study. Phys Rev B 80(035205):1–7
18.
Zurück zum Zitat Buljan A, Llunell M, Ruiz E, Alemany P (2001) Color and conductivity in Cu2O and CuAlO2: a theoretical analysis of d10···d10 Interactions in solid-state compounds. Chem Mater 13:338–344CrossRef Buljan A, Llunell M, Ruiz E, Alemany P (2001) Color and conductivity in Cu2O and CuAlO2: a theoretical analysis of d10···d10 Interactions in solid-state compounds. Chem Mater 13:338–344CrossRef
19.
Zurück zum Zitat Yanagiya S, Van Nong N, Jianxiao X, Pryds N (2010) The effect of (Ag, Ni, Zn)-addition on the thermoelectric properties of copper aluminate. Materials 3:318–328CrossRef Yanagiya S, Van Nong N, Jianxiao X, Pryds N (2010) The effect of (Ag, Ni, Zn)-addition on the thermoelectric properties of copper aluminate. Materials 3:318–328CrossRef
20.
Zurück zum Zitat Jarman RH, Bafia J, Gebreslasse T, Ingram BJ, Carter JD (2013) Synthesis of the p-type semiconducting ternary oxide CuAlO2 using the Pechini method. Mater Res Bull 48:3916–3918CrossRef Jarman RH, Bafia J, Gebreslasse T, Ingram BJ, Carter JD (2013) Synthesis of the p-type semiconducting ternary oxide CuAlO2 using the Pechini method. Mater Res Bull 48:3916–3918CrossRef
21.
Zurück zum Zitat Akyildiz H (2015) Synthesis of CuAlO2 from chemically precipitated nano sized precursors. Ceram Int 41:14108–14115CrossRef Akyildiz H (2015) Synthesis of CuAlO2 from chemically precipitated nano sized precursors. Ceram Int 41:14108–14115CrossRef
22.
23.
Zurück zum Zitat Qiu S, Zheng X, Gao C, Gan X, Chen J, Yang C, Fan H (2009) Pb(Zr0.95Ti0.05)O3 powders and porous ceramics prepared by one-step pyrolysis process using non-aqueous Pechini method. Ceram Int 35:733–740CrossRef Qiu S, Zheng X, Gao C, Gan X, Chen J, Yang C, Fan H (2009) Pb(Zr0.95Ti0.05)O3 powders and porous ceramics prepared by one-step pyrolysis process using non-aqueous Pechini method. Ceram Int 35:733–740CrossRef
24.
Zurück zum Zitat Gaki A, Chrysafi R, Kakali G (2007) Chemical synthesis of hydraulic calcium aluminate compounds using the Pechini technique. J Eur Ceram Soc 27:1781–1784CrossRef Gaki A, Chrysafi R, Kakali G (2007) Chemical synthesis of hydraulic calcium aluminate compounds using the Pechini technique. J Eur Ceram Soc 27:1781–1784CrossRef
25.
Zurück zum Zitat Misra SK, Chaklader CD (1963) The system copper oxide—alumina. J Am Ceram Soc 46:509CrossRef Misra SK, Chaklader CD (1963) The system copper oxide—alumina. J Am Ceram Soc 46:509CrossRef
26.
Zurück zum Zitat Wang W, Zhou Q, Fei X, He Y, Zhang P, Zhang G, Peng L, Xie W (2010) Synthesis of CuO nano- and micro-structures and their Raman spectroscopic studies. Cryst Eng Comm 12:2232–2237CrossRef Wang W, Zhou Q, Fei X, He Y, Zhang P, Zhang G, Peng L, Xie W (2010) Synthesis of CuO nano- and micro-structures and their Raman spectroscopic studies. Cryst Eng Comm 12:2232–2237CrossRef
27.
Zurück zum Zitat Singh DP, Ojha AK, Srivastava ON (2009) Synthesis of different Cu(OH)2 and CuO (nanowires, rectangles, seed-, belt-, and sheetlike) nanostructures by simple wet chemical route. J Phys Chem C 113:3409–3418CrossRef Singh DP, Ojha AK, Srivastava ON (2009) Synthesis of different Cu(OH)2 and CuO (nanowires, rectangles, seed-, belt-, and sheetlike) nanostructures by simple wet chemical route. J Phys Chem C 113:3409–3418CrossRef
28.
Zurück zum Zitat Xu JF, Ji W, Shen ZX, Tang SH (1999) Preparation and characterization of CuO nanocrystals. J Solid State Chem 147:516–519CrossRef Xu JF, Ji W, Shen ZX, Tang SH (1999) Preparation and characterization of CuO nanocrystals. J Solid State Chem 147:516–519CrossRef
29.
Zurück zum Zitat Ramana CV, Massot M, Julien CM (2005) XPS and Raman spectroscopic characterization of LiMn2O4 spinels. Surf Interface Anal 37:412–416CrossRef Ramana CV, Massot M, Julien CM (2005) XPS and Raman spectroscopic characterization of LiMn2O4 spinels. Surf Interface Anal 37:412–416CrossRef
30.
Zurück zum Zitat Caracas R, Banigan EJ (2009) Elasticity and Raman and infrared spectra of MgAl2O4 spinel from density functional perturbation theory. Phys Earth Planet Inter 174:113–121CrossRef Caracas R, Banigan EJ (2009) Elasticity and Raman and infrared spectra of MgAl2O4 spinel from density functional perturbation theory. Phys Earth Planet Inter 174:113–121CrossRef
31.
Zurück zum Zitat Singh MK, Dussan S, Sharma GL, Katiyar RS (2008) Raman scattering measurements of phonon anharmonicity in CuAlO2 thin films. J Appl Phys 104:113503CrossRef Singh MK, Dussan S, Sharma GL, Katiyar RS (2008) Raman scattering measurements of phonon anharmonicity in CuAlO2 thin films. J Appl Phys 104:113503CrossRef
32.
Zurück zum Zitat Pellicer-Porres J, Segura A, Martínez E, Saitta AM, Polian A, Chervin JC, Canny B (2005) Vibrational properties of delafossite CuGaO2 at ambient and high pressures. Phys Rev B 72:064301CrossRef Pellicer-Porres J, Segura A, Martínez E, Saitta AM, Polian A, Chervin JC, Canny B (2005) Vibrational properties of delafossite CuGaO2 at ambient and high pressures. Phys Rev B 72:064301CrossRef
33.
Zurück zum Zitat Byrne D, Cowley A, Bennett N, McGlynn E (2014) The luminescent properties of CuAlO2. J Mater Chem C 2:7859CrossRef Byrne D, Cowley A, Bennett N, McGlynn E (2014) The luminescent properties of CuAlO2. J Mater Chem C 2:7859CrossRef
34.
Zurück zum Zitat Pellicer-Porres J, Martínez-García D, Segura A, Rodríguez-Hernández P, Muñoz A, Chervin JC, Garro N, Kim D (2006) Pressure and temperature dependence of the lattice dynamics of CuAlO2 investigated by Raman scattering experiments and ab initio calculations. Phy Rev B 74:184301CrossRef Pellicer-Porres J, Martínez-García D, Segura A, Rodríguez-Hernández P, Muñoz A, Chervin JC, Garro N, Kim D (2006) Pressure and temperature dependence of the lattice dynamics of CuAlO2 investigated by Raman scattering experiments and ab initio calculations. Phy Rev B 74:184301CrossRef
35.
Zurück zum Zitat Park K, Ko KY, Seo WS (2005) Thermoelectric properties of CuAlO2. J Eur Ceram Soc 25:2219–2222CrossRef Park K, Ko KY, Seo WS (2005) Thermoelectric properties of CuAlO2. J Eur Ceram Soc 25:2219–2222CrossRef
36.
Zurück zum Zitat López R, Gómez R (2012) Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J Sol-Gel Sci Technol 61:1–7CrossRef López R, Gómez R (2012) Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J Sol-Gel Sci Technol 61:1–7CrossRef
37.
Zurück zum Zitat Benreguia N, Barnabe A, Trari M (2015) Sol–gel synthesis and characterization of the delafossite CuAlO2. J Sol-Gel Sci Technol 75:670–679CrossRef Benreguia N, Barnabe A, Trari M (2015) Sol–gel synthesis and characterization of the delafossite CuAlO2. J Sol-Gel Sci Technol 75:670–679CrossRef
38.
Zurück zum Zitat Tate J, Ju HL, Moon JC, Zakutayev A, Richard AP, Russell J, McIntyre DH (2009) Origin of p-type conduction in single-crystal CuAlO2. Phys Rev B 80:165206CrossRef Tate J, Ju HL, Moon JC, Zakutayev A, Richard AP, Russell J, McIntyre DH (2009) Origin of p-type conduction in single-crystal CuAlO2. Phys Rev B 80:165206CrossRef
39.
Zurück zum Zitat Ingram BJ, Mason TO, Asahi R, Park KT, Freeman AJ (2001) Electronic structure and small polaron hole transport of copper aluminate. Phys Rev B 64:155114CrossRef Ingram BJ, Mason TO, Asahi R, Park KT, Freeman AJ (2001) Electronic structure and small polaron hole transport of copper aluminate. Phys Rev B 64:155114CrossRef
40.
Zurück zum Zitat Flynn DR (1968) Thermal conductivity of ceramics. In: Proceedings of symposium on mechanical and thermal properties of ceramics, Catalog Card Number: 68-61960, pp 63–122 Flynn DR (1968) Thermal conductivity of ceramics. In: Proceedings of symposium on mechanical and thermal properties of ceramics, Catalog Card Number: 68-61960, pp 63–122
41.
Zurück zum Zitat Lan W, Pan JQ, Zhu CQ, Wang GQ, Sua Q, Liu XQ, Xie EQ, Yan H (2011) Role of oxygen in structural properties of annealed CuAlO2 films. J Cryst Growth 314:370–373CrossRef Lan W, Pan JQ, Zhu CQ, Wang GQ, Sua Q, Liu XQ, Xie EQ, Yan H (2011) Role of oxygen in structural properties of annealed CuAlO2 films. J Cryst Growth 314:370–373CrossRef
42.
Zurück zum Zitat Neamen DA (2012) Semiconductor physics & devices: basic principles, 4th edn. McGraw-Hill, New York Neamen DA (2012) Semiconductor physics & devices: basic principles, 4th edn. McGraw-Hill, New York
43.
Zurück zum Zitat Banerjee AN, Maity R, Ghosh PK, Chattopadhyay KK (2005) Thermoelectric properties and electrical characteristics of sputter-deposited p-CuAlO2 thin films. Thin Solid Films 474:261–266CrossRef Banerjee AN, Maity R, Ghosh PK, Chattopadhyay KK (2005) Thermoelectric properties and electrical characteristics of sputter-deposited p-CuAlO2 thin films. Thin Solid Films 474:261–266CrossRef
44.
Zurück zum Zitat Bhamu KC, Khenata R, Khan SA, Singh M, Priolkar KR (2016) Electronic, optical and thermoelectric properties of 2H-CuAlO2: a first principles study. J Electron Mater 45(1):615–623. doi:10.1007/s11664-015-4160-3 CrossRef Bhamu KC, Khenata R, Khan SA, Singh M, Priolkar KR (2016) Electronic, optical and thermoelectric properties of 2H-CuAlO2: a first principles study. J Electron Mater 45(1):615–623. doi:10.​1007/​s11664-015-4160-3 CrossRef
Metadaten
Titel
Effect of calcination temperature on structure and thermoelectric properties of CuAlO2 powders
verfasst von
Cesia Guarneros Aguilar
Carolina Estrada Moreno
Mauricio Pacio Castillo
Felipe Caballero-Briones
Publikationsdatum
26.10.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 3/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1602-8

Weitere Artikel der Ausgabe 3/2018

Journal of Materials Science 3/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.