Skip to main content
Erschienen in: Journal of Materials Science 20/2018

02.07.2018 | Energy materials

Dandelion-like α-MnO2 hollow spheres with superior catalytic performance for Li-O2 batteries by a facile in situ pyrolysis

verfasst von: Chuanhua Li, Zhiyong Yu, Hanxing Liu, Linghua Kong

Erschienen in: Journal of Materials Science | Ausgabe 20/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To reduce the severe overpotential of oxygen reduction and evolution reaction (ORR and OER) for rechargeable Li-O2 batteries, the dandelion-like α-MnO2 hollow spheres (HS) with high surface area (105.54 m2 g−1) were prepared by a facile in situ pyrolysis of manganese alkoxide for the first time. The ORR diffusion limiting current density and OER current density at 1.0 versus (Ag/AgCl)/V are 6.32 and 45.82 mA cm−2 at 1600 rpm in alkaline solution, respectively, indicating that dandelion-like α-MnO2-HS catalyst exhibits superior bifunctional catalytic activity. The Li-O2 batteries with α-MnO2-HS catalyst can yield high initial discharge specific capacity of 7897.6 mA h g−1 at 100 mA g−1. Moreover, the cycle life of Li-O2 batteries with α-MnO2-HS catalyst is significantly improved and can sustain 108 cycles. These results indicate that as-fabricated hollow sphere structure without adding any hard templates is favorable for superior bifunctional catalytic activity in aqueous and non-aqueous electrolyte.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Cao C, Xie J, Zhang S, Pan B, Cao G, Zhao X (2017) Graphene-like δ-MnO2 decorated with ultrafine CeO2 as a highly efficient catalyst for long-life lithium-oxygen batteries. J Mater Chem A 5:6747–6755CrossRef Cao C, Xie J, Zhang S, Pan B, Cao G, Zhao X (2017) Graphene-like δ-MnO2 decorated with ultrafine CeO2 as a highly efficient catalyst for long-life lithium-oxygen batteries. J Mater Chem A 5:6747–6755CrossRef
2.
Zurück zum Zitat Park HW, Lee DU, Nazar LF, Chen Z (2013) Oxygen reduction reaction using MnO2 nanotubes/nitrogen-doped exfoliated graphene hybrid catalyst for Li-O2 battery applications. J Electrochem Soc 160:A344–A350CrossRef Park HW, Lee DU, Nazar LF, Chen Z (2013) Oxygen reduction reaction using MnO2 nanotubes/nitrogen-doped exfoliated graphene hybrid catalyst for Li-O2 battery applications. J Electrochem Soc 160:A344–A350CrossRef
3.
Zurück zum Zitat Han X, Cheng F, Chen C, Li F, Chen J (2016) A Co3O4@MnO2/Ni nanocomposite as a carbon- and binder-free cathode for rechargeable Li-O2 batteries. Inorg Chem Front 3:866–871CrossRef Han X, Cheng F, Chen C, Li F, Chen J (2016) A Co3O4@MnO2/Ni nanocomposite as a carbon- and binder-free cathode for rechargeable Li-O2 batteries. Inorg Chem Front 3:866–871CrossRef
4.
Zurück zum Zitat Ni W, Liu S, Fei Y, He Y, Ma X, Lu L, Deng Y (2017) Preparation of carbon nanotubes/manganese dioxide composite catalyst with fewer oxygen-containing groups for Li-O2 batteries using polymerized ionic liquids as sacrifice agent. Acs Appl Mater Inter 9:14749–14757CrossRef Ni W, Liu S, Fei Y, He Y, Ma X, Lu L, Deng Y (2017) Preparation of carbon nanotubes/manganese dioxide composite catalyst with fewer oxygen-containing groups for Li-O2 batteries using polymerized ionic liquids as sacrifice agent. Acs Appl Mater Inter 9:14749–14757CrossRef
5.
Zurück zum Zitat Jian Z, Liu P, Li F, He P, Guo X, Chen M, Zhou H (2014) Core-shell-structured CNT@ RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries. Angew Chem Int Edit 53:442–446CrossRef Jian Z, Liu P, Li F, He P, Guo X, Chen M, Zhou H (2014) Core-shell-structured CNT@ RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries. Angew Chem Int Edit 53:442–446CrossRef
6.
Zurück zum Zitat Yilmaz E, Yogi C, Yamanaka K, Ohta T, Byon HR (2013) Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles. Nano Lett 13:4679–4684CrossRef Yilmaz E, Yogi C, Yamanaka K, Ohta T, Byon HR (2013) Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles. Nano Lett 13:4679–4684CrossRef
7.
Zurück zum Zitat Jung HG, Jeong YS, Park JB, Sun YK, Scrosati B, Lee YJ (2013) Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium–air batteries. ACS Nano 7:3532–3539CrossRef Jung HG, Jeong YS, Park JB, Sun YK, Scrosati B, Lee YJ (2013) Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium–air batteries. ACS Nano 7:3532–3539CrossRef
8.
Zurück zum Zitat Zhang P, He M, Xu S, Yan X (2015) The controlled growth of porous δ-MnO2 nanosheets on carbon fibers as a bi-functional catalyst for rechargeable lithium-oxygen batteries. J Mater Chem A 3:10811–10818CrossRef Zhang P, He M, Xu S, Yan X (2015) The controlled growth of porous δ-MnO2 nanosheets on carbon fibers as a bi-functional catalyst for rechargeable lithium-oxygen batteries. J Mater Chem A 3:10811–10818CrossRef
9.
Zurück zum Zitat Lu X, Zhang L, Sun X, Si W, Yan C, Schmidt OG (2016) Bifunctional Au-Pd decorated MnOx nanomembranes as cathode materials for Li-O2 batteries. J Mater Chem A 4:4155–4160CrossRef Lu X, Zhang L, Sun X, Si W, Yan C, Schmidt OG (2016) Bifunctional Au-Pd decorated MnOx nanomembranes as cathode materials for Li-O2 batteries. J Mater Chem A 4:4155–4160CrossRef
10.
Zurück zum Zitat Xue H, Wu S, Tang J, Gong H, He P, He J, Zhou H (2016) Hierarchical porous nickel cobaltate nanoneedle arrays as flexible carbon-protected cathodes for high-performance lithium–oxygen batteries. Acs Appl Mater Inter 8:8427–8435CrossRef Xue H, Wu S, Tang J, Gong H, He P, He J, Zhou H (2016) Hierarchical porous nickel cobaltate nanoneedle arrays as flexible carbon-protected cathodes for high-performance lithium–oxygen batteries. Acs Appl Mater Inter 8:8427–8435CrossRef
11.
Zurück zum Zitat Hu X, Cheng F, Han X, Zhang T, Chen J (2015) Oxygen bubble-templated hierarchical porous ε-MnO2 as a superior catalyst for rechargeable Li-O2 batteries. Small 11:809–813CrossRef Hu X, Cheng F, Han X, Zhang T, Chen J (2015) Oxygen bubble-templated hierarchical porous ε-MnO2 as a superior catalyst for rechargeable Li-O2 batteries. Small 11:809–813CrossRef
12.
Zurück zum Zitat Guo Z, Zhou D, Dong X, Qiu Z, Wang Y, Xia Y (2013) Ordered hierarchical mesoporous/macroporous carbon: a high-performance catalyst for rechargeable Li-O2 batteries. Adv Mater 25:5668–5672CrossRef Guo Z, Zhou D, Dong X, Qiu Z, Wang Y, Xia Y (2013) Ordered hierarchical mesoporous/macroporous carbon: a high-performance catalyst for rechargeable Li-O2 batteries. Adv Mater 25:5668–5672CrossRef
13.
Zurück zum Zitat Li L, Manthiram A (2014) O- and N- doped carbon nanowebs as metal-free catalysts for hybrid Li-Air batteries. Adv Energy Mater 4:1066–1070 Li L, Manthiram A (2014) O- and N- doped carbon nanowebs as metal-free catalysts for hybrid Li-Air batteries. Adv Energy Mater 4:1066–1070
14.
Zurück zum Zitat Wang X, Li Y (2003) Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chem-Eur J 9:300–306CrossRef Wang X, Li Y (2003) Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chem-Eur J 9:300–306CrossRef
15.
Zurück zum Zitat Feng Q (2010) Synthesis and applications of manganese oxide nanotubes. Inorg Met Nanotub Mater 117:73–82 Feng Q (2010) Synthesis and applications of manganese oxide nanotubes. Inorg Met Nanotub Mater 117:73–82
16.
Zurück zum Zitat Li H, Wang WL, Pan F, Xin X, Chang Q, Liu X (2011) Synthesis of single-crystalline α-MnO2 nanotubes and structural characterization by HRTEM. Mat Sci Eng B Adv 176:1054–1057CrossRef Li H, Wang WL, Pan F, Xin X, Chang Q, Liu X (2011) Synthesis of single-crystalline α-MnO2 nanotubes and structural characterization by HRTEM. Mat Sci Eng B Adv 176:1054–1057CrossRef
17.
Zurück zum Zitat Luo J, Zhu HT, Fan HM, Liang JK, Shi HL, Rao GH, Shen ZX (2008) Synthesis of single-crystal tetragonal α-MnO2 nanotubes. J Phys Chem C 112:12594–12598CrossRef Luo J, Zhu HT, Fan HM, Liang JK, Shi HL, Rao GH, Shen ZX (2008) Synthesis of single-crystal tetragonal α-MnO2 nanotubes. J Phys Chem C 112:12594–12598CrossRef
18.
Zurück zum Zitat Li Q, Olson JB, Penner RM (2004) Nanocrystalline α-MnO2 nanowires by electrochemical step-edge decoration. Chem Mater 16:3402–3405CrossRef Li Q, Olson JB, Penner RM (2004) Nanocrystalline α-MnO2 nanowires by electrochemical step-edge decoration. Chem Mater 16:3402–3405CrossRef
19.
Zurück zum Zitat Ju SH, Kang YC (2008) Nano-sized manganese oxide particles prepared by low-pressure spray pyrolysis using FEAG process. Mater Res Bull 43:590–600CrossRef Ju SH, Kang YC (2008) Nano-sized manganese oxide particles prepared by low-pressure spray pyrolysis using FEAG process. Mater Res Bull 43:590–600CrossRef
20.
Zurück zum Zitat Cheng JH, Shao G, Yu HJ, Xu JJ (2010) Excellent catalytic and electrochemical properties of the mesoporous MnO2 nanospheres/nanosheets. J Alloy Compd 505:163–167CrossRef Cheng JH, Shao G, Yu HJ, Xu JJ (2010) Excellent catalytic and electrochemical properties of the mesoporous MnO2 nanospheres/nanosheets. J Alloy Compd 505:163–167CrossRef
21.
Zurück zum Zitat Liu T, Jiang C, You W, Yu J (2017) Hierarchical porous C/MnO2 composite hollow microspheres with enhanced supercapacitor performance. J Mater Chem. A 5:8635–8643CrossRef Liu T, Jiang C, You W, Yu J (2017) Hierarchical porous C/MnO2 composite hollow microspheres with enhanced supercapacitor performance. J Mater Chem. A 5:8635–8643CrossRef
22.
Zurück zum Zitat Sun X, Liu J, Li Y (2006) Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres. Chem-Eur J 12:2039–2047CrossRef Sun X, Liu J, Li Y (2006) Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres. Chem-Eur J 12:2039–2047CrossRef
23.
Zurück zum Zitat Dinsmore AD, Hsu MF, Nikolaides MG, Marquez M, Bausch AR, Weitz DA (2002) Colloidosomes: selectively permeable capsules composed of colloidal particles. Science 298:1006–1009CrossRef Dinsmore AD, Hsu MF, Nikolaides MG, Marquez M, Bausch AR, Weitz DA (2002) Colloidosomes: selectively permeable capsules composed of colloidal particles. Science 298:1006–1009CrossRef
24.
Zurück zum Zitat Mitchell DT, Lee SB, Trofin L, Li N, Nevanen TK, Söderlund H, Martin CR (2002) Smart nanotubes for bioseparations and biocatalysis. J Am Chem Soc 124:11864–11865CrossRef Mitchell DT, Lee SB, Trofin L, Li N, Nevanen TK, Söderlund H, Martin CR (2002) Smart nanotubes for bioseparations and biocatalysis. J Am Chem Soc 124:11864–11865CrossRef
25.
Zurück zum Zitat Caruso RA, Schattka JH, Greiner A (2001) Titanium dioxide tubes from sol–gel coating of electrospun polymer fibers. Adv Mater 13:1577–1579CrossRef Caruso RA, Schattka JH, Greiner A (2001) Titanium dioxide tubes from sol–gel coating of electrospun polymer fibers. Adv Mater 13:1577–1579CrossRef
26.
Zurück zum Zitat Munaiah Y, Raj BGS, Kumar TP, Ragupathy P (2013) Facile synthesis of hollow sphere amorphous MnO2: the formation mechanism, morphology and effect of a bivalent cation-containing electrolyte on its supercapacitive behavior. J Mater Chem A 1:4300–4306CrossRef Munaiah Y, Raj BGS, Kumar TP, Ragupathy P (2013) Facile synthesis of hollow sphere amorphous MnO2: the formation mechanism, morphology and effect of a bivalent cation-containing electrolyte on its supercapacitive behavior. J Mater Chem A 1:4300–4306CrossRef
27.
Zurück zum Zitat Huang SZ, Cai Y, Jin J, Liu J, Li Y, Yu Y, Su BL (2015) Hierarchical mesoporous urchin-like Mn3O4/carbon microspheres with highly enhanced lithium battery performance by in situ carbonization of new lamellar manganese alkoxide (Mn-DEG). Nano Energy 12:833–844CrossRef Huang SZ, Cai Y, Jin J, Liu J, Li Y, Yu Y, Su BL (2015) Hierarchical mesoporous urchin-like Mn3O4/carbon microspheres with highly enhanced lithium battery performance by in situ carbonization of new lamellar manganese alkoxide (Mn-DEG). Nano Energy 12:833–844CrossRef
28.
Zurück zum Zitat Débart A, Paterson AJ, Bao J, Bruce PG (2008) α-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew Chem Int Edit 47:4521–4524CrossRef Débart A, Paterson AJ, Bao J, Bruce PG (2008) α-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew Chem Int Edit 47:4521–4524CrossRef
29.
Zurück zum Zitat Cheng F, Su Y, Liang J, Tao Z, Chen J (2010) MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. Chem Mater 22:898–905CrossRef Cheng F, Su Y, Liang J, Tao Z, Chen J (2010) MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. Chem Mater 22:898–905CrossRef
30.
Zurück zum Zitat Jin L, Xu L, Morein C, Chen CH, Lai M, Dharmarathna S, Suib SL (2010) Titanium containing γ-MnO2 (TM) hollow spheres: one-step synthesis and catalytic activities in Li/Air batteries and oxidative chemical reactions. Adv Funct Mater 20:3373–3382CrossRef Jin L, Xu L, Morein C, Chen CH, Lai M, Dharmarathna S, Suib SL (2010) Titanium containing γ-MnO2 (TM) hollow spheres: one-step synthesis and catalytic activities in Li/Air batteries and oxidative chemical reactions. Adv Funct Mater 20:3373–3382CrossRef
31.
Zurück zum Zitat Li Y, Tan H, Yang XY, Goris B, Verbeeck J, Bals S, Su BL (2011) Well shaped Mn3O4 nano-octahedra with anomalous magnetic behavior and enhanced photodecomposition properties. Small 7:475–483CrossRef Li Y, Tan H, Yang XY, Goris B, Verbeeck J, Bals S, Su BL (2011) Well shaped Mn3O4 nano-octahedra with anomalous magnetic behavior and enhanced photodecomposition properties. Small 7:475–483CrossRef
32.
Zurück zum Zitat Ye J, Liu W, Cai J, Chen S, Zhao X, Zhou H, Qi L (2011) Nanoporous anatase TiO2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. J Am Chem Soc 133:933–940CrossRef Ye J, Liu W, Cai J, Chen S, Zhao X, Zhou H, Qi L (2011) Nanoporous anatase TiO2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. J Am Chem Soc 133:933–940CrossRef
33.
Zurück zum Zitat Li Y, Yang XY, Rooke J, Van Tendeloo G, Su BL (2010) Ultralong Cu(OH)2 and CuO nanowire bundles: PEG200-directed crystal growth for enhanced photocatalytic performance. J Colloid Interf Sci 348:303–312CrossRef Li Y, Yang XY, Rooke J, Van Tendeloo G, Su BL (2010) Ultralong Cu(OH)2 and CuO nanowire bundles: PEG200-directed crystal growth for enhanced photocatalytic performance. J Colloid Interf Sci 348:303–312CrossRef
34.
Zurück zum Zitat Liu J, Jin J, Deng Z, Huang SZ, Hu ZY, Wang L, Su BL (2012) Tailoring CuO nanostructures for enhanced photocatalytic property. J Colloid Interf Sci 384:1–9CrossRef Liu J, Jin J, Deng Z, Huang SZ, Hu ZY, Wang L, Su BL (2012) Tailoring CuO nanostructures for enhanced photocatalytic property. J Colloid Interf Sci 384:1–9CrossRef
35.
Zurück zum Zitat Liu S, Zhu Y, Xie J, Huo Y, Yang HY, Zhu T, Zhang S (2014) Direct growth of flower-like δ-MnO2 on three-dimensional graphene for high-performance rechargeable Li-O2 batteries. Adv Energy Mater 4:1–9 Liu S, Zhu Y, Xie J, Huo Y, Yang HY, Zhu T, Zhang S (2014) Direct growth of flower-like δ-MnO2 on three-dimensional graphene for high-performance rechargeable Li-O2 batteries. Adv Energy Mater 4:1–9
36.
Zurück zum Zitat Wang G, Huang L, Huang W, Xie J, Du G, Zhang S, Zhao X (2015) Nanostructured porous RuO2/MnO2 as a highly efficient catalyst for high-rate Li-O2 batteries. Nanoscale 7:20614–20624CrossRef Wang G, Huang L, Huang W, Xie J, Du G, Zhang S, Zhao X (2015) Nanostructured porous RuO2/MnO2 as a highly efficient catalyst for high-rate Li-O2 batteries. Nanoscale 7:20614–20624CrossRef
37.
Zurück zum Zitat Brock SL, Sanabria M, Suib SL, Urban V, Thiyagarajan P, Potter DI (1999) Particle size control and self-assembly processes in novel colloids of nanocrystalline manganese oxide. J Phys Chem B 103:7416–7428CrossRef Brock SL, Sanabria M, Suib SL, Urban V, Thiyagarajan P, Potter DI (1999) Particle size control and self-assembly processes in novel colloids of nanocrystalline manganese oxide. J Phys Chem B 103:7416–7428CrossRef
38.
Zurück zum Zitat Santos VP, Pereira MFR, Órfão JJM, Figueiredo JL (2010) The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Appl Catal B-Environ 99:353–363CrossRef Santos VP, Pereira MFR, Órfão JJM, Figueiredo JL (2010) The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Appl Catal B-Environ 99:353–363CrossRef
39.
Zurück zum Zitat Hou J, Liu L, Li Y, Mao M, Lv H, Zhao X (2013) Tuning the K+ concentration in the tunnel of OMS-2 nanorods leads to a significant enhancement of the catalytic activity for benzene oxidation. Environ Sci Technol 47:13730–13736CrossRef Hou J, Liu L, Li Y, Mao M, Lv H, Zhao X (2013) Tuning the K+ concentration in the tunnel of OMS-2 nanorods leads to a significant enhancement of the catalytic activity for benzene oxidation. Environ Sci Technol 47:13730–13736CrossRef
40.
Zurück zum Zitat Sun L, Cao Q, Hu B, Li J, Hao J, Jing G, Tang X (2011) Synthesis, characterization and catalytic activities of vanadium-cryptomelane manganese oxides in low-temperature NO reduction with NH3. App Catal A-Gen 393:323–330CrossRef Sun L, Cao Q, Hu B, Li J, Hao J, Jing G, Tang X (2011) Synthesis, characterization and catalytic activities of vanadium-cryptomelane manganese oxides in low-temperature NO reduction with NH3. App Catal A-Gen 393:323–330CrossRef
41.
Zurück zum Zitat Tang X, Li J, Hao J (2010) Significant enhancement of catalytic activities of manganese oxide octahedral molecular sieve by marginal amount of doping vanadium. Catal Commun 11:871–875CrossRef Tang X, Li J, Hao J (2010) Significant enhancement of catalytic activities of manganese oxide octahedral molecular sieve by marginal amount of doping vanadium. Catal Commun 11:871–875CrossRef
42.
Zurück zum Zitat Wang F, Dai H, Deng J, Bai G, Ji K, Liu Y (2012) Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene. Environ Sci Technol 46:4034–4041CrossRef Wang F, Dai H, Deng J, Bai G, Ji K, Liu Y (2012) Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene. Environ Sci Technol 46:4034–4041CrossRef
43.
Zurück zum Zitat Gong K, Yu P, Su L, Xiong S, Mao L (2007) Polymer-assisted synthesis of manganese dioxide/carbon nanotube nanocomposite with excellent electrocatalytic activity toward reduction of oxygen. J Phys Chem C 111:1882–1887CrossRef Gong K, Yu P, Su L, Xiong S, Mao L (2007) Polymer-assisted synthesis of manganese dioxide/carbon nanotube nanocomposite with excellent electrocatalytic activity toward reduction of oxygen. J Phys Chem C 111:1882–1887CrossRef
44.
Zurück zum Zitat Roche I, Chaînet E, Chatenet M, Vondrák J (2007) Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium: physical characterizations and ORR mechanism. J Phys Chem C 111:1434–1443CrossRef Roche I, Chaînet E, Chatenet M, Vondrák J (2007) Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium: physical characterizations and ORR mechanism. J Phys Chem C 111:1434–1443CrossRef
45.
Zurück zum Zitat Hu FP, Zhang XG, Xiao F, Zhang JL (2005) Oxygen reduction on Ag-MnO2/SWNT and Ag-MnO2/AB electrodes. Carbon 43:2931–2936CrossRef Hu FP, Zhang XG, Xiao F, Zhang JL (2005) Oxygen reduction on Ag-MnO2/SWNT and Ag-MnO2/AB electrodes. Carbon 43:2931–2936CrossRef
46.
Zurück zum Zitat Ma Y, Wang R, Wang H, Key J, Ji S (2015) Control of MnO2 nanocrystal shape from tremella to nanobelt for ehancement of the oxygen reduction reaction activity. J Power Sources 280:526–532CrossRef Ma Y, Wang R, Wang H, Key J, Ji S (2015) Control of MnO2 nanocrystal shape from tremella to nanobelt for ehancement of the oxygen reduction reaction activity. J Power Sources 280:526–532CrossRef
47.
Zurück zum Zitat Huang W, Zhong H, Li D, Tang P, Feng Y (2015) Reduced graphene oxide supported CoO/MnO2 electrocatalysts from layered double hydroxides for oxygen reduction reaction. Electrochim Acta 173:575–580CrossRef Huang W, Zhong H, Li D, Tang P, Feng Y (2015) Reduced graphene oxide supported CoO/MnO2 electrocatalysts from layered double hydroxides for oxygen reduction reaction. Electrochim Acta 173:575–580CrossRef
48.
Zurück zum Zitat Shi C, Zang GL, Zhang Z, Sheng GP, Huang YX, Zhao GX, Yu HQ (2014) Synthesis of layered MnO2 nanosheets for enhanced oxygen reduction reaction catalytic activity. Electrochim Acta 132:239–243CrossRef Shi C, Zang GL, Zhang Z, Sheng GP, Huang YX, Zhao GX, Yu HQ (2014) Synthesis of layered MnO2 nanosheets for enhanced oxygen reduction reaction catalytic activity. Electrochim Acta 132:239–243CrossRef
49.
Zurück zum Zitat Xiao W, Wang D, Lou XW (2010) Shape-controlled synthesis of MnO2 nanostructures with enhanced electrocatalytic activity for oxygen reduction. J Phys Chem C 114:1694–1700CrossRef Xiao W, Wang D, Lou XW (2010) Shape-controlled synthesis of MnO2 nanostructures with enhanced electrocatalytic activity for oxygen reduction. J Phys Chem C 114:1694–1700CrossRef
50.
Zurück zum Zitat Laoire C, Mukerjee S, Plichta EJ, Hendrickson MA, Abraham KM (2011) Rechargeable lithium/TEGDME-LiPF6/O2 battery. J Electrochem Soc 158:302–308CrossRef Laoire C, Mukerjee S, Plichta EJ, Hendrickson MA, Abraham KM (2011) Rechargeable lithium/TEGDME-LiPF6/O2 battery. J Electrochem Soc 158:302–308CrossRef
51.
Zurück zum Zitat Jung HG, Hassoun J, Park JB, Sun YK, Scrosati B (2012) An improved high-performance lithium-air battery. Nat Chem 4:579–585CrossRef Jung HG, Hassoun J, Park JB, Sun YK, Scrosati B (2012) An improved high-performance lithium-air battery. Nat Chem 4:579–585CrossRef
52.
Zurück zum Zitat Lee JH, Black R, Popov G, Pomerantseva E, Nan F, Botton GA, Nazar LF (2012) The role of vacancies and defects in Na0.44MnO2 nanowire catalysts for lithium–oxygen batteries. Energ. Environ Sci 5:9558–9565CrossRef Lee JH, Black R, Popov G, Pomerantseva E, Nan F, Botton GA, Nazar LF (2012) The role of vacancies and defects in Na0.44MnO2 nanowire catalysts for lithium–oxygen batteries. Energ. Environ Sci 5:9558–9565CrossRef
53.
Zurück zum Zitat Han X, Hu Y, Yang J, Cheng F, Chen J (2014) Porous perovskite CaMnO3 as an electrocatalyst for rechargeable Li-O2 batteries. Chem Commun 50:1497–1499CrossRef Han X, Hu Y, Yang J, Cheng F, Chen J (2014) Porous perovskite CaMnO3 as an electrocatalyst for rechargeable Li-O2 batteries. Chem Commun 50:1497–1499CrossRef
54.
Zurück zum Zitat Liu Y, Cao LJ, Cao CW, Wang M, Leung KL, Zeng SS, Lu ZG (2014) Facile synthesis of spinel CuCo2O4 nanocrystals as high-performance cathode catalysts for rechargeable Li-air batteries. Chem Commun 50:14635–14638CrossRef Liu Y, Cao LJ, Cao CW, Wang M, Leung KL, Zeng SS, Lu ZG (2014) Facile synthesis of spinel CuCo2O4 nanocrystals as high-performance cathode catalysts for rechargeable Li-air batteries. Chem Commun 50:14635–14638CrossRef
Metadaten
Titel
Dandelion-like α-MnO2 hollow spheres with superior catalytic performance for Li-O2 batteries by a facile in situ pyrolysis
verfasst von
Chuanhua Li
Zhiyong Yu
Hanxing Liu
Linghua Kong
Publikationsdatum
02.07.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 20/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2629-1

Weitere Artikel der Ausgabe 20/2018

Journal of Materials Science 20/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.