Skip to main content
Erschienen in: Journal of Materials Science 1/2019

27.08.2018 | Electronic materials

Probing the difference in friction performance between graphene and MoS2 by manipulating the silver nanowires

verfasst von: Xingzhong Zeng, Yitian Peng, Haojie Lang, Kang Yu

Erschienen in: Journal of Materials Science | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphene and molybdenum disulfide (MoS2) are promising solid lubricants to deal with the interfacial friction and adhesion concerns in silver nanowires (Ag NWs)-based nanodevices, but their difference in friction performance is seldom considered. Here, the difference in friction performance between graphene and MoS2 has been comparatively studied by manipulating the Ag NWs on graphene and MoS2 surfaces through atomic force microscopy (AFM) tip-on-side and tip-on-top manipulations. The tip-on-side and tip-on-top manipulations demonstrate the atomically thin MoS2 has better friction performance than graphene. The tip-on-top manipulation further shows the shear strength in NW–MoS2 interface is smaller than in NW–graphene interface. The underlying mechanism for the friction difference between the two interfaces is attributed to the different interfacial adhesion interactions. The relatively small adhesion interaction in NW–MoS2 interface leads to a small interfacial shear strength, resulting in a small friction when the NW slides on MoS2 surface. The measured water contact angles, calculated work of adhesion and the adhesion force directly measured by AFM tip confirm the relatively small adhesion interaction in NW–MoS2 interface. These findings suggest that MoS2 may be more appropriate as lubricants for application in the NW-based nanodevices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Zhu Y, Qin Q, Gu Y, Wang Z (2009) Friction and shear strength at the nanowire-substrate interfaces. Nanoscale Res Lett 5:291–295CrossRef Zhu Y, Qin Q, Gu Y, Wang Z (2009) Friction and shear strength at the nanowire-substrate interfaces. Nanoscale Res Lett 5:291–295CrossRef
2.
Zurück zum Zitat Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I (2014) Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8:5154–5163CrossRef Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I (2014) Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8:5154–5163CrossRef
3.
Zurück zum Zitat Song L, Myers AC, Adams JJ, Zhu Y (2014) Stretchable and reversibly deformable radio frequency antennas based on silver nanowires. ACS Appl Mater Interfaces 6:4248–4253CrossRef Song L, Myers AC, Adams JJ, Zhu Y (2014) Stretchable and reversibly deformable radio frequency antennas based on silver nanowires. ACS Appl Mater Interfaces 6:4248–4253CrossRef
4.
Zurück zum Zitat Lee D, Lee H, Ahn Y, Jeong Y, Lee D-Y, Lee Y (2013) Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices. Nanoscale 5:7750–7755CrossRef Lee D, Lee H, Ahn Y, Jeong Y, Lee D-Y, Lee Y (2013) Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices. Nanoscale 5:7750–7755CrossRef
5.
Zurück zum Zitat Hu L, Kim HS, Lee J-Y, Peumans P, Cui Y (2010) Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4:2955–2963CrossRef Hu L, Kim HS, Lee J-Y, Peumans P, Cui Y (2010) Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4:2955–2963CrossRef
6.
Zurück zum Zitat Xiang X-Z, Gong W-Y, Kuang M-S, Wang L (2016) Progress in application and preparation of silver nanowires. Rare Met 35:289–298CrossRef Xiang X-Z, Gong W-Y, Kuang M-S, Wang L (2016) Progress in application and preparation of silver nanowires. Rare Met 35:289–298CrossRef
7.
Zurück zum Zitat Kholmanov IN, Magnuson CW, Aliev AE et al (2012) Improved electrical conductivity of graphene films integrated with metal nanowires. Nano Lett 12:5679–5683CrossRef Kholmanov IN, Magnuson CW, Aliev AE et al (2012) Improved electrical conductivity of graphene films integrated with metal nanowires. Nano Lett 12:5679–5683CrossRef
8.
Zurück zum Zitat Bhushan B (2007) Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS materials and devices. Microelectron Eng 84:387–412CrossRef Bhushan B (2007) Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS materials and devices. Microelectron Eng 84:387–412CrossRef
9.
Zurück zum Zitat Theerthagiri J, Senthil RA, Senthilkumar B, Polu AR, Madhavan J, Ashokkumar M (2017) Recent advances in MoS2 nanostructured materials for energy and environmental applications: a review. J Solid State Chem 252:43–71CrossRef Theerthagiri J, Senthil RA, Senthilkumar B, Polu AR, Madhavan J, Ashokkumar M (2017) Recent advances in MoS2 nanostructured materials for energy and environmental applications: a review. J Solid State Chem 252:43–71CrossRef
10.
Zurück zum Zitat Wu W, Wang J, Ercius P et al (2018) Giant mechano-optoelectronic effect in an atomically thin semiconductor. Nano Lett 18:2351–2357CrossRef Wu W, Wang J, Ercius P et al (2018) Giant mechano-optoelectronic effect in an atomically thin semiconductor. Nano Lett 18:2351–2357CrossRef
11.
Zurück zum Zitat Spear JC, Ewers BW, Batteas JD (2015) 2D-nanomaterials for controlling friction and wear at interfaces. Nano Today 10:301–314CrossRef Spear JC, Ewers BW, Batteas JD (2015) 2D-nanomaterials for controlling friction and wear at interfaces. Nano Today 10:301–314CrossRef
12.
Zurück zum Zitat Lee C, Li QY, Kalb W et al (2010) Frictional characteristics of atomically thin sheets. Science 328:76–80CrossRef Lee C, Li QY, Kalb W et al (2010) Frictional characteristics of atomically thin sheets. Science 328:76–80CrossRef
13.
Zurück zum Zitat Peng Y, Zeng X, Liu L, Cao X, Zou K, Chen R (2017) Nanotribological characterization of graphene on soft elastic substrate. Carbon 124:541–546CrossRef Peng Y, Zeng X, Liu L, Cao X, Zou K, Chen R (2017) Nanotribological characterization of graphene on soft elastic substrate. Carbon 124:541–546CrossRef
14.
Zurück zum Zitat Lancaster JK, Pritchard JR (1981) The influence of environment and pressure on the transition to dusting wear of graphite. J Phys D Appl Phys 14:747–762CrossRef Lancaster JK, Pritchard JR (1981) The influence of environment and pressure on the transition to dusting wear of graphite. J Phys D Appl Phys 14:747–762CrossRef
15.
Zurück zum Zitat Donnet C, Martin JM, LeMogne T, Belin M (1996) Super-low friction of MoS2 coatings in various environments. Tribol Int 29:123–128CrossRef Donnet C, Martin JM, LeMogne T, Belin M (1996) Super-low friction of MoS2 coatings in various environments. Tribol Int 29:123–128CrossRef
16.
Zurück zum Zitat Bryant PJ, GutshallL IL, Taylor LH (1964) A study of mechanisms of graphite friction and wear. Wear 7:118–126CrossRef Bryant PJ, GutshallL IL, Taylor LH (1964) A study of mechanisms of graphite friction and wear. Wear 7:118–126CrossRef
17.
Zurück zum Zitat Martin JM, Donnet C, Lemogne T, Epicier T (1993) Superlubricity of molybdeum-disulfide. Phys Rev B 48:10583–10586CrossRef Martin JM, Donnet C, Lemogne T, Epicier T (1993) Superlubricity of molybdeum-disulfide. Phys Rev B 48:10583–10586CrossRef
18.
Zurück zum Zitat Kawai S, Benassi A, Gnecco E et al (2016) Superlubricity of graphene nanoribbons on gold surfaces. Science 351:957–961CrossRef Kawai S, Benassi A, Gnecco E et al (2016) Superlubricity of graphene nanoribbons on gold surfaces. Science 351:957–961CrossRef
19.
Zurück zum Zitat Liu S-W, Wang H-P, Xu Q et al (2017) Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere. Nat Commun 8:14029CrossRef Liu S-W, Wang H-P, Xu Q et al (2017) Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere. Nat Commun 8:14029CrossRef
20.
Zurück zum Zitat Xa Cao X, Gan Y Peng et al (2018) An ultra-low frictional interface combining FDTS SAMs with molybdenum disulfide. Nanoscale 10:378–385CrossRef Xa Cao X, Gan Y Peng et al (2018) An ultra-low frictional interface combining FDTS SAMs with molybdenum disulfide. Nanoscale 10:378–385CrossRef
21.
Zurück zum Zitat Maharaj D, Bhushan B (2015) Friction, wear and mechanical behavior of nano-objects on the nanoscale. Mater Sci Eng R-Rep 95:1–43CrossRef Maharaj D, Bhushan B (2015) Friction, wear and mechanical behavior of nano-objects on the nanoscale. Mater Sci Eng R-Rep 95:1–43CrossRef
22.
Zurück zum Zitat Seo HW, Han C-S, Jang WS, Park J (2006) Manipulation of carbon nanotubes and nanowires. Curr Appl Phys 6:E216–E219CrossRef Seo HW, Han C-S, Jang WS, Park J (2006) Manipulation of carbon nanotubes and nanowires. Curr Appl Phys 6:E216–E219CrossRef
23.
Zurück zum Zitat Dietzel D, Feldmann M, Fuchs H, Schwarz UD, Schirmeisen A (2009) Transition from static to kinetic friction of metallic nanoparticles. Appl Phys Lett 95:053104CrossRef Dietzel D, Feldmann M, Fuchs H, Schwarz UD, Schirmeisen A (2009) Transition from static to kinetic friction of metallic nanoparticles. Appl Phys Lett 95:053104CrossRef
24.
Zurück zum Zitat Kim HJ, Kang KH, Kim DE (2013) Sliding and rolling frictional behavior of a single ZnO nanowire during manipulation with an AFM. Nanoscale 5:6081–6087CrossRef Kim HJ, Kang KH, Kim DE (2013) Sliding and rolling frictional behavior of a single ZnO nanowire during manipulation with an AFM. Nanoscale 5:6081–6087CrossRef
25.
Zurück zum Zitat Guo W, Yin J, Qiu H, Guo Y, Wu H, Xue M (2014) Friction of low-dimensional nanomaterial systems. Friction 2:209–225CrossRef Guo W, Yin J, Qiu H, Guo Y, Wu H, Xue M (2014) Friction of low-dimensional nanomaterial systems. Friction 2:209–225CrossRef
26.
Zurück zum Zitat Bordag M, Ribayrol A, Conache G et al (2007) Shear stress measurements on InAs nanowires by AFM manipulation. Small 3:1398–1401CrossRef Bordag M, Ribayrol A, Conache G et al (2007) Shear stress measurements on InAs nanowires by AFM manipulation. Small 3:1398–1401CrossRef
27.
Zurück zum Zitat Conache G, Gray SM, Ribayrol A et al (2009) Friction measurements of InAs nanowires on silicon nitride by AFM manipulation. Small 5:203–207CrossRef Conache G, Gray SM, Ribayrol A et al (2009) Friction measurements of InAs nanowires on silicon nitride by AFM manipulation. Small 5:203–207CrossRef
28.
Zurück zum Zitat Kim HJ, Nguyen GH, Ky DLC, Tran DK, Jeon KJ, Chung KH (2016) Static and kinetic friction characteristics of nanowire on different substrates. Appl Surf Sci 379:452–461CrossRef Kim HJ, Nguyen GH, Ky DLC, Tran DK, Jeon KJ, Chung KH (2016) Static and kinetic friction characteristics of nanowire on different substrates. Appl Surf Sci 379:452–461CrossRef
29.
Zurück zum Zitat Tran DK, Chung KH (2015) Simultaneous measurement of elastic properties and friction characteristics of nanowires using atomic force microscopy. Exp Mech 55:903–915CrossRef Tran DK, Chung KH (2015) Simultaneous measurement of elastic properties and friction characteristics of nanowires using atomic force microscopy. Exp Mech 55:903–915CrossRef
30.
Zurück zum Zitat Qin Q, Zhu Y (2011) Static friction between silicon nanowires and elastomeric substrates. ACS Nano 5:7404–7410CrossRef Qin Q, Zhu Y (2011) Static friction between silicon nanowires and elastomeric substrates. ACS Nano 5:7404–7410CrossRef
31.
Zurück zum Zitat Zeng X, Peng Y, Lang H, Liu L (2017) Controllable nanotribological properties of graphene nanosheets. Sci Rep 7:41891CrossRef Zeng X, Peng Y, Lang H, Liu L (2017) Controllable nanotribological properties of graphene nanosheets. Sci Rep 7:41891CrossRef
32.
Zurück zum Zitat Zeng X, Peng Y, Lang H, Cao Xa (2018) Nanotribological behavior of a single silver nanowire on graphite. Nanotechnology 29:085706CrossRef Zeng X, Peng Y, Lang H, Cao Xa (2018) Nanotribological behavior of a single silver nanowire on graphite. Nanotechnology 29:085706CrossRef
33.
Zurück zum Zitat Zeng X, Peng Y, Lang Haojie, Cao Xa (2018) Tuning the nanotribological behaviors of single silver nanowire through various manipulations. Appl Surf Sci 440:830–840CrossRef Zeng X, Peng Y, Lang Haojie, Cao Xa (2018) Tuning the nanotribological behaviors of single silver nanowire through various manipulations. Appl Surf Sci 440:830–840CrossRef
34.
Zurück zum Zitat Wagner K, Cheng P, Vezenov D (2011) Noncontact method for calibration of lateral forces in scanning force microscopy. Langmuir 27:4635–4644CrossRef Wagner K, Cheng P, Vezenov D (2011) Noncontact method for calibration of lateral forces in scanning force microscopy. Langmuir 27:4635–4644CrossRef
35.
Zurück zum Zitat Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund PC (2006) Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett 6:2667–2673CrossRef Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund PC (2006) Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett 6:2667–2673CrossRef
36.
Zurück zum Zitat Nemes-Incze P, Osvath Z, Kamaras K, Biro LP (2008) Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon 46:1435–1442CrossRef Nemes-Incze P, Osvath Z, Kamaras K, Biro LP (2008) Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon 46:1435–1442CrossRef
37.
Zurück zum Zitat Lee C, Yan H, Brus LE, Heinz TF, Hone J, Ryu S (2010) Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4:2695–2700CrossRef Lee C, Yan H, Brus LE, Heinz TF, Hone J, Ryu S (2010) Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4:2695–2700CrossRef
38.
Zurück zum Zitat Khac BCT, Jeon KJ, Choi ST, Kim YS, DelRio FW, Chung KH (2016) Laser-induced particle adsorption on atomically thin MoS2. ACS Appl Mater Interfaces 8:2974–2984CrossRef Khac BCT, Jeon KJ, Choi ST, Kim YS, DelRio FW, Chung KH (2016) Laser-induced particle adsorption on atomically thin MoS2. ACS Appl Mater Interfaces 8:2974–2984CrossRef
39.
Zurück zum Zitat Dietzel D, Schwarz UD, Schirmeisen A (2014) Nanotribological studies using nanoparticle manipulation: principles and application to structural lubricity. Friction 2:114–139CrossRef Dietzel D, Schwarz UD, Schirmeisen A (2014) Nanotribological studies using nanoparticle manipulation: principles and application to structural lubricity. Friction 2:114–139CrossRef
40.
Zurück zum Zitat Grierson DS, Flater EE, Carpick RW (2005) Accounting for the JKR-DMT transition in adhesion and friction measurements with atomic force microscopy. J Adhes Sci Technol 19:291–311CrossRef Grierson DS, Flater EE, Carpick RW (2005) Accounting for the JKR-DMT transition in adhesion and friction measurements with atomic force microscopy. J Adhes Sci Technol 19:291–311CrossRef
41.
Zurück zum Zitat Carpick RW, Ogletree DF, Salmeron M (1999) A general equation for fitting contact area and friction vs load measurements. J Colloid Interface Sci 211:395–400CrossRef Carpick RW, Ogletree DF, Salmeron M (1999) A general equation for fitting contact area and friction vs load measurements. J Colloid Interface Sci 211:395–400CrossRef
42.
Zurück zum Zitat Gao JP, Luedtke WD, Gourdon D, Ruths M, Israelachvili JN, Landman U (2004) Frictional forces and Amontons’ law: from the molecular to the macroscopic scale. J Phys Chem B 108:3410–3425CrossRef Gao JP, Luedtke WD, Gourdon D, Ruths M, Israelachvili JN, Landman U (2004) Frictional forces and Amontons’ law: from the molecular to the macroscopic scale. J Phys Chem B 108:3410–3425CrossRef
43.
Zurück zum Zitat Mo YF, Turner KT, Szlufarska I (2009) Friction laws at the nanoscale. Nature 457:1116–1119CrossRef Mo YF, Turner KT, Szlufarska I (2009) Friction laws at the nanoscale. Nature 457:1116–1119CrossRef
44.
Zurück zum Zitat Pettes MT, Shi L (2014) A reexamination of phonon transport through a nanoscale point contact in vacuum. J Heat Transf-Trans ASME 136:032401CrossRef Pettes MT, Shi L (2014) A reexamination of phonon transport through a nanoscale point contact in vacuum. J Heat Transf-Trans ASME 136:032401CrossRef
45.
Zurück zum Zitat Carkner CJ, Haw SM, Mosey NJ (2010) Effect of adhesive interactions on static friction at the atomic scale. Phys Rev Lett 105:056102CrossRef Carkner CJ, Haw SM, Mosey NJ (2010) Effect of adhesive interactions on static friction at the atomic scale. Phys Rev Lett 105:056102CrossRef
46.
Zurück zum Zitat Dong YL (2014) Effects of substrate roughness and electron-phonon coupling on thickness-dependent friction of graphene. J Phys D-Appl Phys 47:055305CrossRef Dong YL (2014) Effects of substrate roughness and electron-phonon coupling on thickness-dependent friction of graphene. J Phys D-Appl Phys 47:055305CrossRef
47.
Zurück zum Zitat Koenig SP, Boddeti NG, Dunn ML, Bunch JS (2011) Ultrastrong adhesion of graphene membranes. Nat Nanotechnol 6:543–546CrossRef Koenig SP, Boddeti NG, Dunn ML, Bunch JS (2011) Ultrastrong adhesion of graphene membranes. Nat Nanotechnol 6:543–546CrossRef
48.
Zurück zum Zitat Li P, You Z, Cui T (2013) Molybdenum disulfide dc contact MEMS shunt switch. J Micromech Microeng 23:045026CrossRef Li P, You Z, Cui T (2013) Molybdenum disulfide dc contact MEMS shunt switch. J Micromech Microeng 23:045026CrossRef
49.
Zurück zum Zitat Zeng XZ, Peng YT, Lang HJ (2017) A novel approach to decrease friction of graphene. Carbon 118:233–240CrossRef Zeng XZ, Peng YT, Lang HJ (2017) A novel approach to decrease friction of graphene. Carbon 118:233–240CrossRef
50.
Zurück zum Zitat Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond 95:65–87CrossRef Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond 95:65–87CrossRef
51.
Zurück zum Zitat Delcheva I, Ralston J, Beattie DA, Krasowska M (2015) Static and dynamic wetting behaviour of ionic liquids. Adv Coll Interface Sci 222:162–171CrossRef Delcheva I, Ralston J, Beattie DA, Krasowska M (2015) Static and dynamic wetting behaviour of ionic liquids. Adv Coll Interface Sci 222:162–171CrossRef
52.
Zurück zum Zitat Kwok DY, Neumann AW (2000) Contact angle interpretation in terms of solid surface tension. Colloids Surf A 161:31–48CrossRef Kwok DY, Neumann AW (2000) Contact angle interpretation in terms of solid surface tension. Colloids Surf A 161:31–48CrossRef
53.
Zurück zum Zitat Wang SR, Zhang Y, Abidi N, Cabrales L (2009) Wettability and surface free energy of graphene films. Langmuir 25:11078–11081CrossRef Wang SR, Zhang Y, Abidi N, Cabrales L (2009) Wettability and surface free energy of graphene films. Langmuir 25:11078–11081CrossRef
54.
Zurück zum Zitat Wang W, Dai S, Li X, Yang J, Srolovitz DJ, Zheng Q (2015) Measurement of the cleavage energy of graphite. Nat Commun 6:7853CrossRef Wang W, Dai S, Li X, Yang J, Srolovitz DJ, Zheng Q (2015) Measurement of the cleavage energy of graphite. Nat Commun 6:7853CrossRef
55.
Zurück zum Zitat Gaur APS, Sahoo S, Ahmadi M, Dash SP, Guinel MJF, Katiyar RS (2014) Surface energy engineering for tunable wettability through controlled synthesis of MoS2. Nano Lett 14:4314–4321CrossRef Gaur APS, Sahoo S, Ahmadi M, Dash SP, Guinel MJF, Katiyar RS (2014) Surface energy engineering for tunable wettability through controlled synthesis of MoS2. Nano Lett 14:4314–4321CrossRef
56.
Zurück zum Zitat Jung JH, Park C-H, Ihm J (2018) A rigorous method of calculating exfoliation energies from first principles. Nano Lett 18:2759–2765CrossRef Jung JH, Park C-H, Ihm J (2018) A rigorous method of calculating exfoliation energies from first principles. Nano Lett 18:2759–2765CrossRef
57.
Zurück zum Zitat Butt HJ, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59:1–152CrossRef Butt HJ, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59:1–152CrossRef
58.
Zurück zum Zitat Wei Z, Zhao Y-P (2007) Growth of liquid bridge in AFM. J Phys D-Appl Phys 40:4368–4375CrossRef Wei Z, Zhao Y-P (2007) Growth of liquid bridge in AFM. J Phys D-Appl Phys 40:4368–4375CrossRef
59.
Zurück zum Zitat Jiang J-W (2015) Graphene versus MoS2: a short review. Front Phys 10:287–302CrossRef Jiang J-W (2015) Graphene versus MoS2: a short review. Front Phys 10:287–302CrossRef
60.
Zurück zum Zitat Dienwiebel M, Verhoeven GS, Pradeep N, Frenken JWM, Heimberg JA, Zandbergen HW (2004) Superlubricity of graphite. Phys Rev Lett 92:126101CrossRef Dienwiebel M, Verhoeven GS, Pradeep N, Frenken JWM, Heimberg JA, Zandbergen HW (2004) Superlubricity of graphite. Phys Rev Lett 92:126101CrossRef
Metadaten
Titel
Probing the difference in friction performance between graphene and MoS2 by manipulating the silver nanowires
verfasst von
Xingzhong Zeng
Yitian Peng
Haojie Lang
Kang Yu
Publikationsdatum
27.08.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 1/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2839-6

Weitere Artikel der Ausgabe 1/2019

Journal of Materials Science 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.