Skip to main content
Erschienen in: Journal of Materials Science 26/2020

26.05.2020 | Metals & corrosion

Improved tensile strength and electrical conductivity in Cu–Cr–Zr alloys by controlling the precipitation behavior through severe warm rolling

verfasst von: D. P. Shen, N. Xu, M. Y. Gong, P. Li, H. B. Zhou, W. P. Tong, Gerhard Wilde

Erschienen in: Journal of Materials Science | Ausgabe 26/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A Cu–Cr–Zr alloy was subjected to severe warm rolling, and the effects of processing temperature and strain on the precipitation and microstructures were systematically studied. The results show that the nucleation and growth of precipitates interact with the deformation-induced defects, and therefore, the distribution precipitates vary with the different warm rolling processes. This leads to a significant impact on mechanical and electrical properties. In detail, the size of the precipitates is coarser, but the number density is lower as the applied strain (after each annealing treatment) and temperature are higher. And therefore, the UTS is lower, but the electrical conductivity is higher in rolled sheets under higher strain and temperature. Moreover, the present process could improve the comprehensive properties of Cu–Cr–Zr alloys, and an excellent combination of high UTS of 586 MPa and good electrical conductivity of 78.2%IACS was achieved in the sample of RRA ~ 723 K. (The sample was subjected to intermediate annealing treatment at 723 K between each of two rolling passes.)

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang DL, Mihara K, Tsubokawa S, Suzuk HG (2000) Precipitation characteristics of Cu–15Cr–0.15Zr in situ composite. Mater Sci Technol 16:357–363CrossRef Zhang DL, Mihara K, Tsubokawa S, Suzuk HG (2000) Precipitation characteristics of Cu–15Cr–0.15Zr in situ composite. Mater Sci Technol 16:357–363CrossRef
3.
Zurück zum Zitat Xu S, Fu H, Wang Y (2018) Effect of Ag addition on the microstructure and mechanical properties of Cu–Cr alloy. Mater Sci Eng A 726:208–214CrossRef Xu S, Fu H, Wang Y (2018) Effect of Ag addition on the microstructure and mechanical properties of Cu–Cr alloy. Mater Sci Eng A 726:208–214CrossRef
4.
Zurück zum Zitat Shen DP, Zhu YJ, Yang X, Tong WP (2018) Investigation on the microstructure and properties of Cu–Cr alloy prepared by in-situ synthesis method. Vacuum 149:207–213CrossRef Shen DP, Zhu YJ, Yang X, Tong WP (2018) Investigation on the microstructure and properties of Cu–Cr alloy prepared by in-situ synthesis method. Vacuum 149:207–213CrossRef
5.
Zurück zum Zitat Zhou HT, Zhong JW, Zhou X, Zhao ZK (2008) Microstructure and properties of Cu–1.0 Cr–0.2 Zr–0.03 Fe alloy. Mater Sci Eng A 498:225–230CrossRef Zhou HT, Zhong JW, Zhou X, Zhao ZK (2008) Microstructure and properties of Cu–1.0 Cr–0.2 Zr–0.03 Fe alloy. Mater Sci Eng A 498:225–230CrossRef
6.
Zurück zum Zitat Vinogradov A, Patlan V, Suzuki Y, Kitagawa K, Kopylov V (2002) Structure and properties of ultra-fine grain Cu–Cr–Zr alloy produced by equal-channel angular pressing. Acta Mater 50:1639–1651CrossRef Vinogradov A, Patlan V, Suzuki Y, Kitagawa K, Kopylov V (2002) Structure and properties of ultra-fine grain Cu–Cr–Zr alloy produced by equal-channel angular pressing. Acta Mater 50:1639–1651CrossRef
7.
Zurück zum Zitat Huang AH, Wang YF, Wang MS (2019) Optimizing the strength, ductility and electrical conductivity of a Cu–Cr–Zr alloy by rotary swannealing and annealing treatment. Mater Sci Eng A 746:211–216CrossRef Huang AH, Wang YF, Wang MS (2019) Optimizing the strength, ductility and electrical conductivity of a Cu–Cr–Zr alloy by rotary swannealing and annealing treatment. Mater Sci Eng A 746:211–216CrossRef
8.
Zurück zum Zitat Shen DP, Zhou HB, Tong WP (2019) Grain refinement and enhanced precipitation of Cu–Cr–Zr induced by hot rolling with intermediate annealing treatment. J Mate Res Technol 8:5041–5045CrossRef Shen DP, Zhou HB, Tong WP (2019) Grain refinement and enhanced precipitation of Cu–Cr–Zr induced by hot rolling with intermediate annealing treatment. J Mate Res Technol 8:5041–5045CrossRef
9.
Zurück zum Zitat Ding R, Guo C, Guo S (2013) Assessment of anisotropic tensile strength using a modified shear punch test for Cu–Cr–Zr alloy processed by severe plastic deformation. Mater Sci Eng A 587:320–327CrossRef Ding R, Guo C, Guo S (2013) Assessment of anisotropic tensile strength using a modified shear punch test for Cu–Cr–Zr alloy processed by severe plastic deformation. Mater Sci Eng A 587:320–327CrossRef
10.
Zurück zum Zitat Islamgaliev RK, Nesterov KM, Bourgon J, Champion Y, Valiev RZ (2014) Nanostructured Cu–Cr alloy with high strength and electrical conductivity. J Appl Phys 115:194301CrossRef Islamgaliev RK, Nesterov KM, Bourgon J, Champion Y, Valiev RZ (2014) Nanostructured Cu–Cr alloy with high strength and electrical conductivity. J Appl Phys 115:194301CrossRef
11.
Zurück zum Zitat Islamgaliev RK, Nesterov KM, Champion Y, Valiev RZ (2014) Enhanced strength and electrical conductivity in ultrafine-grained Cu-Cr alloy processed by severe plastic deformation. IOP Conf Series Mater Sci Eng 63:012118CrossRef Islamgaliev RK, Nesterov KM, Champion Y, Valiev RZ (2014) Enhanced strength and electrical conductivity in ultrafine-grained Cu-Cr alloy processed by severe plastic deformation. IOP Conf Series Mater Sci Eng 63:012118CrossRef
12.
Zurück zum Zitat Fu HD, Xu S, Li W, Xie JX, Zhao HB, Pan ZJ (2017) Effect of rolling and aging processes on microstructure and properties of Cu–Cr–Zr alloy. Mater Sci Eng A 700:107–115CrossRef Fu HD, Xu S, Li W, Xie JX, Zhao HB, Pan ZJ (2017) Effect of rolling and aging processes on microstructure and properties of Cu–Cr–Zr alloy. Mater Sci Eng A 700:107–115CrossRef
13.
Zurück zum Zitat Zhang SJ, Li RG, Kang HJ et al (2017) A high strength and high electrical conductivity Cu–Cr–Zr alloy fabricated by cryorolling and intermediate aging treatment. Mater Sci Eng A 680:108–114CrossRef Zhang SJ, Li RG, Kang HJ et al (2017) A high strength and high electrical conductivity Cu–Cr–Zr alloy fabricated by cryorolling and intermediate aging treatment. Mater Sci Eng A 680:108–114CrossRef
14.
Zurück zum Zitat Sun L, Tao NR, Lu K (2015) A high strength and high electrical conductivity bulk CuCrZr alloy with nanotwins. Scripta Mater 99:73–76CrossRef Sun L, Tao NR, Lu K (2015) A high strength and high electrical conductivity bulk CuCrZr alloy with nanotwins. Scripta Mater 99:73–76CrossRef
15.
Zurück zum Zitat Sakai T, Belyakov A, Kaibyshev R, Miura H, Jonas JJ (2014) Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog Mater Sci 60:130–207CrossRef Sakai T, Belyakov A, Kaibyshev R, Miura H, Jonas JJ (2014) Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog Mater Sci 60:130–207CrossRef
16.
Zurück zum Zitat Estrin Y, Kim HS, Nabarro FR (2007) A comment on the role of Frank-Read sources in plasticity of nanomaterials. Acta Mater 55:6401–6407CrossRef Estrin Y, Kim HS, Nabarro FR (2007) A comment on the role of Frank-Read sources in plasticity of nanomaterials. Acta Mater 55:6401–6407CrossRef
17.
Zurück zum Zitat Bouaziz O, Estrin Y, Brechet Y, Embury JD (2010) Critical grain size for dislocation storage and consequences for strain hardening of nanocrystalline materials. Scripta Mater 63:477–479CrossRef Bouaziz O, Estrin Y, Brechet Y, Embury JD (2010) Critical grain size for dislocation storage and consequences for strain hardening of nanocrystalline materials. Scripta Mater 63:477–479CrossRef
18.
Zurück zum Zitat Cizek J, Janecek M, Srba O, Kuzel R, Barnovska Z, Prochazka I, Dobatkin S (2011) Rvolution of defects in copper deformed by high-pressure torsion. Acta Mater 59:2322–2329CrossRef Cizek J, Janecek M, Srba O, Kuzel R, Barnovska Z, Prochazka I, Dobatkin S (2011) Rvolution of defects in copper deformed by high-pressure torsion. Acta Mater 59:2322–2329CrossRef
19.
Zurück zum Zitat Shakhova I, Yanushkevich Z, Fedorova I, Belyakov A, Kaibyshev R (2014) Grain refinement in a Cu–Cr–Zr alloy during multidirectional forging. Mater Sci Eng A 606:380–389 CrossRef Shakhova I, Yanushkevich Z, Fedorova I, Belyakov A, Kaibyshev R (2014) Grain refinement in a Cu–Cr–Zr alloy during multidirectional forging. Mater Sci Eng A 606:380–389 CrossRef
20.
Zurück zum Zitat Takata N, Ohtake Y, Kita K, Kitagawa K, Tsuji N (2009) Increasing the ductility of ultrafine-grained copper alloy by introducing fine precipitates. Scripta Mater 60:590–593CrossRef Takata N, Ohtake Y, Kita K, Kitagawa K, Tsuji N (2009) Increasing the ductility of ultrafine-grained copper alloy by introducing fine precipitates. Scripta Mater 60:590–593CrossRef
21.
Zurück zum Zitat Meng A, Nie JF, Wei K (2019) Optimization of strength, ductility and electrical conductivity of a Cu–Cr–Zr alloy by cold rolling and annealing treatment. Vacuum 167:329–335CrossRef Meng A, Nie JF, Wei K (2019) Optimization of strength, ductility and electrical conductivity of a Cu–Cr–Zr alloy by cold rolling and annealing treatment. Vacuum 167:329–335CrossRef
22.
Zurück zum Zitat Krishna SC, Karthick NK, Rao GS (2018) High strength utilizable ductility and electrical conductivity in cold rolled sheets of Cu–Cr–Zr–Ti alloy. J Mate Eng Perform 27:787–793CrossRef Krishna SC, Karthick NK, Rao GS (2018) High strength utilizable ductility and electrical conductivity in cold rolled sheets of Cu–Cr–Zr–Ti alloy. J Mate Eng Perform 27:787–793CrossRef
23.
Zurück zum Zitat Fu HD, Xu S, Li W (2017) Effect of rolling and annealing processes on microstructure and properties of Cu–Cr–Zr alloy[J]. Mater Sci Eng A 700:107–115CrossRef Fu HD, Xu S, Li W (2017) Effect of rolling and annealing processes on microstructure and properties of Cu–Cr–Zr alloy[J]. Mater Sci Eng A 700:107–115CrossRef
24.
Zurück zum Zitat Liang NN, Liu JZ, Lin SC (2018) A multiscale architectured Cu-Cr-Zr alloy with high strength, electrical conductivity and thermal stability. J Alloys Compds 735:1389–1394CrossRef Liang NN, Liu JZ, Lin SC (2018) A multiscale architectured Cu-Cr-Zr alloy with high strength, electrical conductivity and thermal stability. J Alloys Compds 735:1389–1394CrossRef
25.
Zurück zum Zitat León KV, Muñoz-Morris MA, Morris DG (2012) Optimisation of strength and ductility of Cu–Cr–Zr by combining severe plastic deformation and precipitation. Mater Sci Eng A 536:181–189CrossRef León KV, Muñoz-Morris MA, Morris DG (2012) Optimisation of strength and ductility of Cu–Cr–Zr by combining severe plastic deformation and precipitation. Mater Sci Eng A 536:181–189CrossRef
26.
Zurück zum Zitat Kermajani M, Raygan S, Hanayi K, Ghaffari H (2013) Influence of thermomechanical treatment on microstructure and properties of electroslag remelted Cu–Cr–Zr alloy. Mater Des 51:688–694CrossRef Kermajani M, Raygan S, Hanayi K, Ghaffari H (2013) Influence of thermomechanical treatment on microstructure and properties of electroslag remelted Cu–Cr–Zr alloy. Mater Des 51:688–694CrossRef
27.
Zurück zum Zitat Militzer M, Sun WP, Jonas JJ (1994) Modelling the effect of deformation-induced vacancies on segregation and precipitation. Acta Metall 42:133–141CrossRef Militzer M, Sun WP, Jonas JJ (1994) Modelling the effect of deformation-induced vacancies on segregation and precipitation. Acta Metall 42:133–141CrossRef
28.
Zurück zum Zitat Guo F, Zhang DF, Yang XS, Jiang LY, Pan FS (2015) Strain-induced dynamic precipitation of Mg17Al12 phases in Mg–8Al alloys sheets rolled at 748K. Mater Sci Eng A 636:516–521CrossRef Guo F, Zhang DF, Yang XS, Jiang LY, Pan FS (2015) Strain-induced dynamic precipitation of Mg17Al12 phases in Mg–8Al alloys sheets rolled at 748K. Mater Sci Eng A 636:516–521CrossRef
29.
Zurück zum Zitat Zhao S, Meng C, Mao F, Hu W, Gottstein G (2014) Influence of severe plastic deformation on dynamic strain aging of ultrafine grained Al–Mg alloys. Acta Mater 76:54–67CrossRef Zhao S, Meng C, Mao F, Hu W, Gottstein G (2014) Influence of severe plastic deformation on dynamic strain aging of ultrafine grained Al–Mg alloys. Acta Mater 76:54–67CrossRef
30.
Zurück zum Zitat Chen XM, Lin YC, Wen DX, Zhang JL, He M (2014) Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation. Mater Des 57:568–577CrossRef Chen XM, Lin YC, Wen DX, Zhang JL, He M (2014) Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation. Mater Des 57:568–577CrossRef
31.
Zurück zum Zitat Wang J, Guo W, Gao X, Su J (2015) The third-type of strain aging and the constitutive modeling of a Q235B steel over a wide range of temperatures and strain rates. Int J Plast 65:85–107CrossRef Wang J, Guo W, Gao X, Su J (2015) The third-type of strain aging and the constitutive modeling of a Q235B steel over a wide range of temperatures and strain rates. Int J Plast 65:85–107CrossRef
32.
Zurück zum Zitat Morozova A, Kaibyshev R (2017) Grain refinement and strengthening of a Cu–0.1Cr–0.06Zr alloy subjected to equal channel angular pressing. Philos Mag 97:2053–2076CrossRef Morozova A, Kaibyshev R (2017) Grain refinement and strengthening of a Cu–0.1Cr–0.06Zr alloy subjected to equal channel angular pressing. Philos Mag 97:2053–2076CrossRef
33.
Zurück zum Zitat Mishnev R, Shakhova I, Belyakov A, Kaibyshev R (2015) Deformation microstructures, strengthening mechanisms, and electrical conductivity in a Cu–Cr–Zr alloy. Mater Sci Eng A 629:29–40CrossRef Mishnev R, Shakhova I, Belyakov A, Kaibyshev R (2015) Deformation microstructures, strengthening mechanisms, and electrical conductivity in a Cu–Cr–Zr alloy. Mater Sci Eng A 629:29–40CrossRef
34.
Zurück zum Zitat Chbihi A, Sauvage X, Blavette D (2012) Atomic scale investigation of Cr precipitation in copper[J]. Acta Mater 60:4575–4585CrossRef Chbihi A, Sauvage X, Blavette D (2012) Atomic scale investigation of Cr precipitation in copper[J]. Acta Mater 60:4575–4585CrossRef
35.
Zurück zum Zitat Chen X, Jiang F, Liu L (2018) Structure and orientation relationship of new precipitates in a Cu–Cr–Zr alloy[J]. Mater Sci Technol 34:282–288CrossRef Chen X, Jiang F, Liu L (2018) Structure and orientation relationship of new precipitates in a Cu–Cr–Zr alloy[J]. Mater Sci Technol 34:282–288CrossRef
36.
Zurück zum Zitat Weast RC (1981) Handbook of chemistry and physics, 61st edn. CRC Press, Boca Raton Weast RC (1981) Handbook of chemistry and physics, 61st edn. CRC Press, Boca Raton
Metadaten
Titel
Improved tensile strength and electrical conductivity in Cu–Cr–Zr alloys by controlling the precipitation behavior through severe warm rolling
verfasst von
D. P. Shen
N. Xu
M. Y. Gong
P. Li
H. B. Zhou
W. P. Tong
Gerhard Wilde
Publikationsdatum
26.05.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 26/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04849-3

Weitere Artikel der Ausgabe 26/2020

Journal of Materials Science 26/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.