Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 11/2014

01.11.2014

Dielectric and spectroscopic features of ZnO–ZnF2–B2O3:MoO3 glass ceramic—a possible material for plasma display panels

verfasst von: P. Naresh, G. Naga Raju, M. Srinivas Reddy, T. Venkatappa Rao, I. V. Kityk, N. Veeraiah

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 11/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

ZnO–ZnF2–B2O3 borate glass mixed with different concentrations of MoO3 were synthesized and subsequently crystallized. The X-ray diffraction studies revealed that the samples were embedded with crystalline phases in which molybdenum ions exist in Mo6+ and Mo5+ states. The results of spectroscopic studies (viz., optical absorption and electron spin resonance) have revealed that the there is an increasing proportion of Mo5+ ions with increase in the concentration of MoO3 in the glass ceramic. The results of photoluminescence spectra have indicated that if the care is taken to minimize Mo5+ ion concentration, these glass ceramics are suitable for light emission in the blue, green and red regions. The analysis of the results of IR spectra have indicated that with increase in the content of MoO3 there is an increasing degree of disorder in the glass network. The room temperature dielectric constant of these glass ceramics containing even the highest concentration of MoO3 is always found to be in between 11.5 and 12.4 suggesting that these glass ceramics would be suitable for dielectric layer in plasma display panels (PDP). The dielectric parameters have exhibited relaxation character; the relaxation effects have been attributed to molybdenyl complexes. The observed increase in the electrical conductivity with MoO3 content is attributed to the contribution of polaronic transfer between Mo5+ ⟷ Mo6+ ions. Additionally, the substantial decrement in jump distance for zinc ions between the two sites in the ceramic network (because of increase in the concentration of dangling bonds) is also found to contribute to the conductivity. The value of dielectric breakdown strength for the studied materials is measured to be in the range of 10.54–12.9 kV/cm which is far greater than the required value for a material to be used as dielectric layer in PDP.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat B.L. Zhu, D.W. Zeng, W.L. Song, A.H. Wang, Mater Chem Phys 89, 148–153 (2005)CrossRef B.L. Zhu, D.W. Zeng, W.L. Song, A.H. Wang, Mater Chem Phys 89, 148–153 (2005)CrossRef
3.
Zurück zum Zitat D. Liu, D. Tang, L. Ci, X. Yan, Y.N. Liang, Z. Zhou, H. Yuan, W. Zhou, G. Wang, Chin Phys Lett 20, 928–931 (2003)CrossRef D. Liu, D. Tang, L. Ci, X. Yan, Y.N. Liang, Z. Zhou, H. Yuan, W. Zhou, G. Wang, Chin Phys Lett 20, 928–931 (2003)CrossRef
5.
6.
Zurück zum Zitat S.E. Derenzo, M.K. Klintenberg, Nucl Instr Meth Phys Res A 486, 214–219 (2002)CrossRef S.E. Derenzo, M.K. Klintenberg, Nucl Instr Meth Phys Res A 486, 214–219 (2002)CrossRef
7.
Zurück zum Zitat T. Shinoda, M. Wakitani, T. Nanto, N. Awaji, S. Kanagu, Electron Dev 47, 77–81 (2000)CrossRef T. Shinoda, M. Wakitani, T. Nanto, N. Awaji, S. Kanagu, Electron Dev 47, 77–81 (2000)CrossRef
8.
Zurück zum Zitat F.H. Wang, H.P. Chang, C.C. Tseng, C.C. Huang, Surf Coat Tech 205, 5269–5277 (2011)CrossRef F.H. Wang, H.P. Chang, C.C. Tseng, C.C. Huang, Surf Coat Tech 205, 5269–5277 (2011)CrossRef
9.
Zurück zum Zitat L. Ding, Y. Yang, X. Jiang, C. Zhu, G. Chen, J. Non-Cryst, Solids 354, 1382–1385 (2008) L. Ding, Y. Yang, X. Jiang, C. Zhu, G. Chen, J. Non-Cryst, Solids 354, 1382–1385 (2008)
10.
Zurück zum Zitat M. Abdel-Baki, F. El-Diasty, J Solid State Chem 184, 2762–2769 (2011)CrossRef M. Abdel-Baki, F. El-Diasty, J Solid State Chem 184, 2762–2769 (2011)CrossRef
11.
12.
Zurück zum Zitat Bondar IA, Toropov NA (1964) In: Porai-Koshits EA (ed) The structure of glass, vol 3, p 35 Bondar IA, Toropov NA (1964) In: Porai-Koshits EA (ed) The structure of glass, vol 3, p 35
13.
14.
Zurück zum Zitat P.W. McMillan 2nd (ed.), Glass-ceramics (Academic Press, London, 1979) P.W. McMillan 2nd (ed.), Glass-ceramics (Academic Press, London, 1979)
15.
Zurück zum Zitat L.S. Rao, M.S. Reddy, D.K. Rao, N. Veeraiah, J Solid State Sci 11, 578–587 (2009)CrossRef L.S. Rao, M.S. Reddy, D.K. Rao, N. Veeraiah, J Solid State Sci 11, 578–587 (2009)CrossRef
17.
Zurück zum Zitat P. Naresh, G. Naga Raju, C.S. Rao, S.V.G.V.A. Prasad, V. Ravi Kumar, N. Veeraiah, Phys B 407, 712–718 (2012)CrossRef P. Naresh, G. Naga Raju, C.S. Rao, S.V.G.V.A. Prasad, V. Ravi Kumar, N. Veeraiah, Phys B 407, 712–718 (2012)CrossRef
18.
Zurück zum Zitat F. Kohlmuller, Bull. Chim. Fr., 4379 (1968) F. Kohlmuller, Bull. Chim. Fr., 4379 (1968)
19.
Zurück zum Zitat J.C. Couturier, Rev Chim Miner 22, 753 (1986) J.C. Couturier, Rev Chim Miner 22, 753 (1986)
20.
Zurück zum Zitat K.J. Rao, Structural Chemistry of Glasses (Elsevier, Amsterdam, 2002) K.J. Rao, Structural Chemistry of Glasses (Elsevier, Amsterdam, 2002)
21.
Zurück zum Zitat K. Chen, Introduction to non-cryst. Semiconductor physics (Chinease Academy Press, Beijing, 1987) K. Chen, Introduction to non-cryst. Semiconductor physics (Chinease Academy Press, Beijing, 1987)
22.
Zurück zum Zitat G.L. Flower, G.S. Baskaran, N. Veeraiah, Mater Chem Phys 100, 211–216 (2006)CrossRef G.L. Flower, G.S. Baskaran, N. Veeraiah, Mater Chem Phys 100, 211–216 (2006)CrossRef
24.
25.
26.
Zurück zum Zitat G. Srinivasarao, N. Veeraiah, J Solid State Chem 166, 104–117 (2002)CrossRef G. Srinivasarao, N. Veeraiah, J Solid State Chem 166, 104–117 (2002)CrossRef
27.
Zurück zum Zitat C.J.F. Böttcher, P. Bordewijk, Theory of electrical polarization (Elsevier, Amsterdam, 1978) C.J.F. Böttcher, P. Bordewijk, Theory of electrical polarization (Elsevier, Amsterdam, 1978)
28.
Zurück zum Zitat K. Srilatha, K.S. Rao, Y. Gandhi, V.R. Kumar, N. Veeraiah, J Alloys Compd 507, 391–398 (2010)CrossRef K. Srilatha, K.S. Rao, Y. Gandhi, V.R. Kumar, N. Veeraiah, J Alloys Compd 507, 391–398 (2010)CrossRef
29.
Zurück zum Zitat T. Srikumar, ChS Rao, Y. Gandhi, N. Venkatramaiah, V. Ravikumar, N. Veeraiah, J Phys Chem Solids 72, 190–200 (2011)CrossRef T. Srikumar, ChS Rao, Y. Gandhi, N. Venkatramaiah, V. Ravikumar, N. Veeraiah, J Phys Chem Solids 72, 190–200 (2011)CrossRef
30.
Zurück zum Zitat L. Pavic, N.N. Rao, A.M. Milankovic, A. Santic, V. Ravi Kumar, M. Piasecki, I.V. Kityk, N. Veeraiah, Ceram Int 40, 5989–5996 (2014)CrossRef L. Pavic, N.N. Rao, A.M. Milankovic, A. Santic, V. Ravi Kumar, M. Piasecki, I.V. Kityk, N. Veeraiah, Ceram Int 40, 5989–5996 (2014)CrossRef
31.
32.
Zurück zum Zitat R.K. Brow, J. Non-Cryst, Solids 194, 267–273 (1996) R.K. Brow, J. Non-Cryst, Solids 194, 267–273 (1996)
33.
Zurück zum Zitat P. Syam Prasad, M.S. Reddy, V. Ravi Kumar, N. Veeraiah, Philos Mag 87, 5763–5787 (2007)CrossRef P. Syam Prasad, M.S. Reddy, V. Ravi Kumar, N. Veeraiah, Philos Mag 87, 5763–5787 (2007)CrossRef
34.
Zurück zum Zitat F. Branda, A. Buri, A. Marotta, S. Saiello, Thermochim Acta 77, 13–18 (1984)CrossRef F. Branda, A. Buri, A. Marotta, S. Saiello, Thermochim Acta 77, 13–18 (1984)CrossRef
35.
Zurück zum Zitat R. Lordanova, Y. Dimitriev, S. Kassabov, D. Klissurski, J Non Cryst Solids 231, 227–233 (1998) R. Lordanova, Y. Dimitriev, S. Kassabov, D. Klissurski, J Non Cryst Solids 231, 227–233 (1998)
36.
Zurück zum Zitat G. Calas, M. Le Grand, L. Galoisy, D. Ghaleb, J Nucl Mater 322, 15–20 (2003)CrossRef G. Calas, M. Le Grand, L. Galoisy, D. Ghaleb, J Nucl Mater 322, 15–20 (2003)CrossRef
37.
Zurück zum Zitat O. Cozar, D.A. Magdas, I. Ardelean, Non Cryst Solids 354, 1032–1035 (2008)CrossRef O. Cozar, D.A. Magdas, I. Ardelean, Non Cryst Solids 354, 1032–1035 (2008)CrossRef
38.
Zurück zum Zitat B.V.R. Chowdari, P. Pramoda, Kumari. Solid State Ion 113, 665–675 (1998)CrossRef B.V.R. Chowdari, P. Pramoda, Kumari. Solid State Ion 113, 665–675 (1998)CrossRef
39.
Zurück zum Zitat N.Y. Garces, M.M. Chirila, H.J. Murphy, J.W. Foise, E.A. Thomas, C. Wicks, K. Grencewicz, L.E. Halliburton, N.C. Giles, J Phys Chem Solids 64, 1195–1200 (2003)CrossRef N.Y. Garces, M.M. Chirila, H.J. Murphy, J.W. Foise, E.A. Thomas, C. Wicks, K. Grencewicz, L.E. Halliburton, N.C. Giles, J Phys Chem Solids 64, 1195–1200 (2003)CrossRef
40.
Zurück zum Zitat D. Boudlich, M. Haddad, R. Berger, J. Kliava, J Non Cryst Solids 224, 135–142 (1998)CrossRef D. Boudlich, M. Haddad, R. Berger, J. Kliava, J Non Cryst Solids 224, 135–142 (1998)CrossRef
41.
Zurück zum Zitat A. Bals, J. Kliava, J Magn Reson 53, 243 (1983) A. Bals, J. Kliava, J Magn Reson 53, 243 (1983)
42.
Zurück zum Zitat M. Nagarjuna, T. Satyanarayana, V. Ravi Kumar, N. Veeraiah, Phys B 404, 3748–3755 (2009)CrossRef M. Nagarjuna, T. Satyanarayana, V. Ravi Kumar, N. Veeraiah, Phys B 404, 3748–3755 (2009)CrossRef
43.
Zurück zum Zitat R. Berger, P. Beziade, A. Levasseur, Y. Servant, J Phys Chem Glasses 31, 231 (1990) R. Berger, P. Beziade, A. Levasseur, Y. Servant, J Phys Chem Glasses 31, 231 (1990)
44.
Zurück zum Zitat A.V. Rao, C. Laxmikanth, B.A. Rao, N. Veeraiah, J Phys Chem Solids 67, 2263–2274 (2006)CrossRef A.V. Rao, C. Laxmikanth, B.A. Rao, N. Veeraiah, J Phys Chem Solids 67, 2263–2274 (2006)CrossRef
45.
46.
Zurück zum Zitat P.N. Rao, B.V. Raghavaiah, D.K. Rao, N. Veeraiah, Mater Chem Phys 91, 381–390 (2005)CrossRef P.N. Rao, B.V. Raghavaiah, D.K. Rao, N. Veeraiah, Mater Chem Phys 91, 381–390 (2005)CrossRef
47.
Zurück zum Zitat T. Satyanarayana, I.V. Kityk, M. Piasecki, P. Bragiel, M.G. Brik, Y. Gandhi, N. Veeraiah, J Phys Condens Matter 21, 245104–245112 (2009)CrossRef T. Satyanarayana, I.V. Kityk, M. Piasecki, P. Bragiel, M.G. Brik, Y. Gandhi, N. Veeraiah, J Phys Condens Matter 21, 245104–245112 (2009)CrossRef
48.
Zurück zum Zitat P. Naresh, G. Naga Raju, V. Ravi Kumar, M. Piasecki, I.V. Kiytyk, N. Veeraiah, Ceram Int 40, 2249–2260 (2014)CrossRef P. Naresh, G. Naga Raju, V. Ravi Kumar, M. Piasecki, I.V. Kiytyk, N. Veeraiah, Ceram Int 40, 2249–2260 (2014)CrossRef
49.
Zurück zum Zitat P. Raghava Rao, L. Pavić, A. Moguš-Milanković, V. Ravi Kumar, I.V. Kityk, N. Veeraiah, J Non Cryst Solids 358, 3255–3267 (2012)CrossRef P. Raghava Rao, L. Pavić, A. Moguš-Milanković, V. Ravi Kumar, I.V. Kityk, N. Veeraiah, J Non Cryst Solids 358, 3255–3267 (2012)CrossRef
50.
Zurück zum Zitat S. Mukherjee, A.K. Pal, J Phys Condens Matter 20, 255202–255211 (2008)CrossRef S. Mukherjee, A.K. Pal, J Phys Condens Matter 20, 255202–255211 (2008)CrossRef
51.
Zurück zum Zitat A. Gajovic, A. Santic, I. Djerdj, N. Tomasic, A. Mogus-Milankovic, D. Sheng Su, J Alloys Compd 479, 525–531 (2009)CrossRef A. Gajovic, A. Santic, I. Djerdj, N. Tomasic, A. Mogus-Milankovic, D. Sheng Su, J Alloys Compd 479, 525–531 (2009)CrossRef
53.
Zurück zum Zitat C. Cramer, K. Funke, B. Roling, T. Saatkamp, D. Wilmer, M.D. Ingram, A. Pradel, M. Ribes, G. Taillades, Solid State Ion 86, 481–486 (1996)CrossRef C. Cramer, K. Funke, B. Roling, T. Saatkamp, D. Wilmer, M.D. Ingram, A. Pradel, M. Ribes, G. Taillades, Solid State Ion 86, 481–486 (1996)CrossRef
55.
Zurück zum Zitat R. Vijay, P. Ramesh Babu, B.V. Raghavaiah, P.M. Vinaya Teja, M. Piasecki, N. Veeraiah, D. Krishan Rao, J Non Cryst Solids 386, 67–75 (2014)CrossRef R. Vijay, P. Ramesh Babu, B.V. Raghavaiah, P.M. Vinaya Teja, M. Piasecki, N. Veeraiah, D. Krishan Rao, J Non Cryst Solids 386, 67–75 (2014)CrossRef
56.
Zurück zum Zitat S. Joon-Young, S. Young Cho, Displays 27, 112–116 (2006) S. Joon-Young, S. Young Cho, Displays 27, 112–116 (2006)
Metadaten
Titel
Dielectric and spectroscopic features of ZnO–ZnF2–B2O3:MoO3 glass ceramic—a possible material for plasma display panels
verfasst von
P. Naresh
G. Naga Raju
M. Srinivas Reddy
T. Venkatappa Rao
I. V. Kityk
N. Veeraiah
Publikationsdatum
01.11.2014
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 11/2014
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-014-2251-1

Weitere Artikel der Ausgabe 11/2014

Journal of Materials Science: Materials in Electronics 11/2014 Zur Ausgabe

Neuer Inhalt