Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 20/2017

10.07.2017

In situ preparation of silver nanoparticles decorated graphene conductive ink for inkjet printing

verfasst von: Dunying Deng, Shuo Feng, Minhao Shi, Chong Huang

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 20/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Conductive ink can be widely applied in printed electronics to print high conductivity and flexible electrodes, especially for large-area formats with low cost considerations. In this article, we demonstrated that the in situ prepared silver nanoparticles decorated graphene conductive ink was suitable for flexible electronics. By using liquid phase exfolication method and reducing the silver salt to nano silver at the same system which addressed the heterogeneous issue of silver decorated graphene. The inkjet-printed graphene features attained low resistivity of 20 ± 1Ω/□ after a thermal anneal at 400 °C for 30 min while showed uniform morphology, compatibility with flexible substrates.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T. Sangoi, C.G. Smith, M.D. Seymour, J.N. Venkataraman, D.M. Clark, M.L. Kleper, B.E.J. Kahn, Printing radio frequency identification (RFID) tag antennas using inks containing silver dispersions. Dispers. Sci. Technol. 25, 513–521(2004)CrossRef T. Sangoi, C.G. Smith, M.D. Seymour, J.N. Venkataraman, D.M. Clark, M.L. Kleper, B.E.J. Kahn, Printing radio frequency identification (RFID) tag antennas using inks containing silver dispersions. Dispers. Sci. Technol. 25, 513–521(2004)CrossRef
2.
Zurück zum Zitat M. Allen, C.W. Lee, B.J. Ahn, T. Kololuoma, K.H. Shin, S.L. Ko, R2R gravure and inkjet printed RF resonant tag. Microelectron. Eng. 88, 3293–3299 (2011)CrossRef M. Allen, C.W. Lee, B.J. Ahn, T. Kololuoma, K.H. Shin, S.L. Ko, R2R gravure and inkjet printed RF resonant tag. Microelectron. Eng. 88, 3293–3299 (2011)CrossRef
3.
Zurück zum Zitat L.L. Lavery, G.L. Whiting, A.C. Arias, All ink-jet printed polyfluorene photosensor for high illuminance detection. Org. Electron. 12, 682–685 (2011)CrossRef L.L. Lavery, G.L. Whiting, A.C. Arias, All ink-jet printed polyfluorene photosensor for high illuminance detection. Org. Electron. 12, 682–685 (2011)CrossRef
4.
Zurück zum Zitat V. Dua, S.P. Surwade, S. Ammu, S.R. Agnihotra, S. Jain, K.E. Roberts, S. Park, R.S. Ruoff, S.K. Manohar, All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem. Int. Ed. 49, 2154–2157 (2010)CrossRef V. Dua, S.P. Surwade, S. Ammu, S.R. Agnihotra, S. Jain, K.E. Roberts, S. Park, R.S. Ruoff, S.K. Manohar, All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem. Int. Ed. 49, 2154–2157 (2010)CrossRef
5.
Zurück zum Zitat C.N. Hoth, P. Schilinsky, S.A. Choulis, C.J. Brabec, Printing highly efficient organic solar cells. Nano Lett. 8, 2806–2813 (2008)CrossRef C.N. Hoth, P. Schilinsky, S.A. Choulis, C.J. Brabec, Printing highly efficient organic solar cells. Nano Lett. 8, 2806–2813 (2008)CrossRef
6.
Zurück zum Zitat C.N. Hoth, S.A. Choulis, P. Schilinsky, C.J. Brabec, High photovoltaic performance of inkjet printed polymer:fullerene blends. Adv. Mater. 19, 3973–3978 (2007)CrossRef C.N. Hoth, S.A. Choulis, P. Schilinsky, C.J. Brabec, High photovoltaic performance of inkjet printed polymer:fullerene blends. Adv. Mater. 19, 3973–3978 (2007)CrossRef
7.
Zurück zum Zitat J.C. Lin, J.Y. Chan, On the resistance of silver migration in Ag-Pd conductive thick films under humid environment and applied d.c. field. Mater. Chem. Phys. 43, 256–265(1996)CrossRef J.C. Lin, J.Y. Chan, On the resistance of silver migration in Ag-Pd conductive thick films under humid environment and applied d.c. field. Mater. Chem. Phys. 43, 256–265(1996)CrossRef
8.
Zurück zum Zitat D.Y. Deng, Y.R. Cheng, Y.X. Jin, T.K. Qi, F. Xiao, Antioxidative effect of lactic acid-stabilized copper nanoparticles prepared in aqueous solution. J. Mater. Chem. 22, 23989–23995 (2012)CrossRef D.Y. Deng, Y.R. Cheng, Y.X. Jin, T.K. Qi, F. Xiao, Antioxidative effect of lactic acid-stabilized copper nanoparticles prepared in aqueous solution. J. Mater. Chem. 22, 23989–23995 (2012)CrossRef
9.
Zurück zum Zitat C. Di, D. Wei, G. Yu, Y. Liu, Y. Guo, D. Zhu, Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Adv. Mater. 20, 3289–3293 (2008)CrossRef C. Di, D. Wei, G. Yu, Y. Liu, Y. Guo, D. Zhu, Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Adv. Mater. 20, 3289–3293 (2008)CrossRef
10.
Zurück zum Zitat F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G.W. Hsieh, S. Jung, F. Bonaccorso, P.J. Paul, et al., Injet printed graphene electronics. ACS Nano 6, 2992–3006 (2012)CrossRef F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G.W. Hsieh, S. Jung, F. Bonaccorso, P.J. Paul, et al., Injet printed graphene electronics. ACS Nano 6, 2992–3006 (2012)CrossRef
11.
Zurück zum Zitat S.K. Lee, B.J. Kim, H. Jang, S.C. Yoon, C. Lee, B.H. Hong, J.A. Rogers, J.H. Cho, J.H. Ahn, Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett. 11, 4642–4646 (2011)CrossRef S.K. Lee, B.J. Kim, H. Jang, S.C. Yoon, C. Lee, B.H. Hong, J.A. Rogers, J.H. Cho, J.H. Ahn, Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett. 11, 4642–4646 (2011)CrossRef
12.
Zurück zum Zitat B.J. Kim, S.K. Lee, M.S. Kang, J.H. Ahn, J.H. Cho, Coplanar-gate transparent graphene transistors and inverters on plastic. ACS Nano 6, 8646–8651 (2012)CrossRef B.J. Kim, S.K. Lee, M.S. Kang, J.H. Ahn, J.H. Cho, Coplanar-gate transparent graphene transistors and inverters on plastic. ACS Nano 6, 8646–8651 (2012)CrossRef
13.
Zurück zum Zitat A. Green, M.C. Hersam, Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 9, 4031–4036 (2009)CrossRef A. Green, M.C. Hersam, Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett. 9, 4031–4036 (2009)CrossRef
14.
Zurück zum Zitat Y.T. Liang, M.C. Hersam, Highly concentrated graphene solutions via polymer enhanced solvent exfoliation and iterative solvent exchange. J. Am. Chem. Soc. 132, 17661–17663 (2010)CrossRef Y.T. Liang, M.C. Hersam, Highly concentrated graphene solutions via polymer enhanced solvent exfoliation and iterative solvent exchange. J. Am. Chem. Soc. 132, 17661–17663 (2010)CrossRef
15.
Zurück zum Zitat J.T. Seo, A.A. Green, A.L. Antaris, M.C. Hersam, High-concentration aqueous dispersions of graphene using nonionic, biocompatible block copolymers. J. Phys. Chem. Lett. 2, 1004–1008 (2011)CrossRef J.T. Seo, A.A. Green, A.L. Antaris, M.C. Hersam, High-concentration aqueous dispersions of graphene using nonionic, biocompatible block copolymers. J. Phys. Chem. Lett. 2, 1004–1008 (2011)CrossRef
16.
Zurück zum Zitat F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G.W. Hsieh, S. Jung, F. Bonaccorso, et al., Ink-jet printed graphene electronics. ACS Nano 6, 2992–3006 (2012)CrossRef F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G.W. Hsieh, S. Jung, F. Bonaccorso, et al., Ink-jet printed graphene electronics. ACS Nano 6, 2992–3006 (2012)CrossRef
17.
Zurück zum Zitat L.N. Kholmanov, C.W. Magnuson, A.E. Aliev, H. Li, B. Zhang, J.W. Suk, L.L. Zhang, E. Peng, S.H. Mousavi, A.B. Khanikaev, R. Piner, G. Shvets, R.S. Ruoff, Improved electrical conductivity of graphene films integrated with metal nanowires. Nano Lett. 12, 5679–5683 (2012)CrossRef L.N. Kholmanov, C.W. Magnuson, A.E. Aliev, H. Li, B. Zhang, J.W. Suk, L.L. Zhang, E. Peng, S.H. Mousavi, A.B. Khanikaev, R. Piner, G. Shvets, R.S. Ruoff, Improved electrical conductivity of graphene films integrated with metal nanowires. Nano Lett. 12, 5679–5683 (2012)CrossRef
18.
Zurück zum Zitat K.K. Kim, A. Reina, Y. Shi, H. Park, L.J. Li, Y.H. Lee, J. Kong, Enhancing the conductivity of transparent graphene films via doping. Nanotechnology 21, 285205–285210 (2010)CrossRef K.K. Kim, A. Reina, Y. Shi, H. Park, L.J. Li, Y.H. Lee, J. Kong, Enhancing the conductivity of transparent graphene films via doping. Nanotechnology 21, 285205–285210 (2010)CrossRef
19.
Zurück zum Zitat G. Giovannetti, P.A. Khomyakov, G. Brocks, V.M. Karpan, J. van den Brink, P.J. Kelly, Doping graphene with metal contacts. Phys. Rev. Lett. 101, 026803–026807 (2008)CrossRef G. Giovannetti, P.A. Khomyakov, G. Brocks, V.M. Karpan, J. van den Brink, P.J. Kelly, Doping graphene with metal contacts. Phys. Rev. Lett. 101, 026803–026807 (2008)CrossRef
20.
Zurück zum Zitat E.B. Secor, P.L. Prabhumirashi, K. Puntambekar, M.L. Geier, M.C. Hersam, Inkjet printing of high conductivity, flexible graphene patterns. J. Phys. Chem. Lett. 4, 1347–1351 (2013)CrossRef E.B. Secor, P.L. Prabhumirashi, K. Puntambekar, M.L. Geier, M.C. Hersam, Inkjet printing of high conductivity, flexible graphene patterns. J. Phys. Chem. Lett. 4, 1347–1351 (2013)CrossRef
21.
Zurück zum Zitat G. Cummins, M.P.Y. Desmulliez, Inkjet printing of conductive materials:a review. Circuit World 38, 193–213 (2012)CrossRef G. Cummins, M.P.Y. Desmulliez, Inkjet printing of conductive materials:a review. Circuit World 38, 193–213 (2012)CrossRef
22.
Zurück zum Zitat M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour, Inkjet printing process and its applications. Adv. Mater. 22, 673–685 (2010)CrossRef M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour, Inkjet printing process and its applications. Adv. Mater. 22, 673–685 (2010)CrossRef
23.
Zurück zum Zitat D. Gans, B.J. Schubert, Inkjet printing of well-defined polymer dots and arrays. Langmuir 20, 7789–7793 (2004)CrossRef D. Gans, B.J. Schubert, Inkjet printing of well-defined polymer dots and arrays. Langmuir 20, 7789–7793 (2004)CrossRef
24.
Zurück zum Zitat S. Jeong, D. Kim, J. Moon, Ink-jet-printed organic-inorganic hybrid dielectrics for organic thin-film transistors. J. Phys. Chem. C 112, 5245–5249 (2008)CrossRef S. Jeong, D. Kim, J. Moon, Ink-jet-printed organic-inorganic hybrid dielectrics for organic thin-film transistors. J. Phys. Chem. C 112, 5245–5249 (2008)CrossRef
25.
Zurück zum Zitat J.A. Lim, W.H. Lee, H.S. Lee, J.H. Lee, Y.D. Park, K. Cho, Self-organization of ink-jet-printed triisopropylsilylethynyl pentacene via evaporation-induced flows in a drying droplet. Adv. Funct. Mater. 18, 229–234 (2008)CrossRef J.A. Lim, W.H. Lee, H.S. Lee, J.H. Lee, Y.D. Park, K. Cho, Self-organization of ink-jet-printed triisopropylsilylethynyl pentacene via evaporation-induced flows in a drying droplet. Adv. Funct. Mater. 18, 229–234 (2008)CrossRef
Metadaten
Titel
In situ preparation of silver nanoparticles decorated graphene conductive ink for inkjet printing
verfasst von
Dunying Deng
Shuo Feng
Minhao Shi
Chong Huang
Publikationsdatum
10.07.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 20/2017
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-7427-z

Weitere Artikel der Ausgabe 20/2017

Journal of Materials Science: Materials in Electronics 20/2017 Zur Ausgabe

Neuer Inhalt