Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 2/2018

12.10.2017

Effect of Ni2+ substitution on crystal structure and microwave dielectric properties for MgZrNb2O8 ceramics

verfasst von: Mi Xiao, Jie Lou, Yanshuang Wei, Hongrui Sun, Lei Li, Ping Zhang

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Monoclinic structured Mg1−xNixZrNb2O8 (0 ≤ x ≤ 0.12) ceramics were synthesized for the first time through traditional solid-state reaction process and pure phase were obtained in all range. Rietveld refinement was used to analyze the crystal structure. With the increase of Ni2+ substitution amount, ε r decreased, Q × f rose first then fell, τ f shifted for the positive direction. Bond ionicity, lattice energy and bond energy were separately calculated to investigate the correlations with microwave dielectric properties. Typically, ceramics samples with the composition of Mg0.92Ni0.08ZrNb2O8 sintered at 1280 °C for 4 h exhibited the optimum microwave dielectric properties: ε r  = 24.58, Q × f = 74534.1 GHz, τ f  = − 49.11 ppm/°C, which could be a promising material for application.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Zhang, R.Z. Zuo, Relationship of the structural phase transition and microwave dielectric properties in MgZrNb2O8–TiO2 ceramics. Ceram Int 42, 7681–7689 (2016)CrossRef J. Zhang, R.Z. Zuo, Relationship of the structural phase transition and microwave dielectric properties in MgZrNb2O8–TiO2 ceramics. Ceram Int 42, 7681–7689 (2016)CrossRef
2.
Zurück zum Zitat Y. Cheng, R.Z. Zuo, Preparation and microwave dielectric properties of low-loss MgZrNb2O8 ceramics. Ceram Int. 39, 8681–8685 (2013)CrossRef Y. Cheng, R.Z. Zuo, Preparation and microwave dielectric properties of low-loss MgZrNb2O8 ceramics. Ceram Int. 39, 8681–8685 (2013)CrossRef
3.
Zurück zum Zitat R.C. Pullar, S. Farrah, MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics. J. Eur. Ceram. Soc. 27, 1059–1063 (2007)CrossRef R.C. Pullar, S. Farrah, MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics. J. Eur. Ceram. Soc. 27, 1059–1063 (2007)CrossRef
4.
Zurück zum Zitat S.D. Ramarao, V.R.K. Murthy, Crystal structure refinement and microwave dielectric properties of new low dielectric loss AZrNb2O8 (A:Mn,Zn,Mg and Co) ceramics. Scripta Mater. 29, 274–277 (2013)CrossRef S.D. Ramarao, V.R.K. Murthy, Crystal structure refinement and microwave dielectric properties of new low dielectric loss AZrNb2O8 (A:Mn,Zn,Mg and Co) ceramics. Scripta Mater. 29, 274–277 (2013)CrossRef
5.
Zurück zum Zitat P.L. Pan, C.F. Xing, Sintering characteristics and microwave dielectric properties of low loss MgZrNb2O8 ceramics achieved by reaction sintering process. J. Alloys Compd. 687, 274–279 (2016)CrossRef P.L. Pan, C.F. Xing, Sintering characteristics and microwave dielectric properties of low loss MgZrNb2O8 ceramics achieved by reaction sintering process. J. Alloys Compd. 687, 274–279 (2016)CrossRef
6.
Zurück zum Zitat J.D. Guo, H.T. Wu, Characterization and microwave dielectric properties of wolframite-type MgZrNb2O8 ceramics. J. Alloys Compd. 655, 60–65 (2016)CrossRef J.D. Guo, H.T. Wu, Characterization and microwave dielectric properties of wolframite-type MgZrNb2O8 ceramics. J. Alloys Compd. 655, 60–65 (2016)CrossRef
7.
Zurück zum Zitat W.S. Xia, F.Y. Yang, New low-dielectric-loss NiZrNb2O8 ceramics for microwave application. J. Alloy Compd. 656, 470–475 (2016)CrossRef W.S. Xia, F.Y. Yang, New low-dielectric-loss NiZrNb2O8 ceramics for microwave application. J. Alloy Compd. 656, 470–475 (2016)CrossRef
8.
Zurück zum Zitat L.X. Li, H. Sun, A new microwave dielectric material ZnZrNbTaO8. Mater. Lett. 160, 363–365 (2015)CrossRef L.X. Li, H. Sun, A new microwave dielectric material ZnZrNbTaO8. Mater. Lett. 160, 363–365 (2015)CrossRef
9.
Zurück zum Zitat W.S. Xia, L.Y. Zhang, Extrinsic effects on microwave dielectric properties of high-Q MgZrTa2O8 ceramics. J. Mater. Sci. 27, 11325–11330 (2016) W.S. Xia, L.Y. Zhang, Extrinsic effects on microwave dielectric properties of high-Q MgZrTa2O8 ceramics. J. Mater. Sci. 27, 11325–11330 (2016)
10.
Zurück zum Zitat P. Zhang, Y.G. Zhao, Bond ionicity, lattice energy, bond energy and microwave dielectric properties of ZnZr(Nb1-xAx)2O8 (A = Ta, Sb) ceramics. Dalton T 44, 16684–16693 (2015)CrossRef P. Zhang, Y.G. Zhao, Bond ionicity, lattice energy, bond energy and microwave dielectric properties of ZnZr(Nb1-xAx)2O8 (A = Ta, Sb) ceramics. Dalton T 44, 16684–16693 (2015)CrossRef
11.
Zurück zum Zitat C.L. Huang, W.R. Yang, P.C. Yu, High-Q microwave dielectrics in low-temperature sintered (Zn1-xNix)3Nb2O8 ceramics. J Eur Ceram Soc 34, 277–284 (2014)CrossRef C.L. Huang, W.R. Yang, P.C. Yu, High-Q microwave dielectrics in low-temperature sintered (Zn1-xNix)3Nb2O8 ceramics. J Eur Ceram Soc 34, 277–284 (2014)CrossRef
12.
Zurück zum Zitat R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distance in halides and chalcogenides. Acta Cryst. 32, 751–767 (1976)CrossRef R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distance in halides and chalcogenides. Acta Cryst. 32, 751–767 (1976)CrossRef
13.
Zurück zum Zitat J.C. Phillips, Dielectric definition of Electronegativity. Phys. Rev. Lett. 20 550–553 (1968)CrossRef J.C. Phillips, Dielectric definition of Electronegativity. Phys. Rev. Lett. 20 550–553 (1968)CrossRef
14.
Zurück zum Zitat J.C. Phillips, J.A. Van Vechten, Dielectric classification of crystal structures, ionization potentials, and band structures. Phys. Rev. Lett. 22, 705–708 (1969)CrossRef J.C. Phillips, J.A. Van Vechten, Dielectric classification of crystal structures, ionization potentials, and band structures. Phys. Rev. Lett. 22, 705–708 (1969)CrossRef
15.
Zurück zum Zitat B.F. Levine, Bond susceptibilities and ionicities in complex crystal structures. J. Chem. Phys. 59, 1463–1486 (1973)CrossRef B.F. Levine, Bond susceptibilities and ionicities in complex crystal structures. J. Chem. Phys. 59, 1463–1486 (1973)CrossRef
16.
Zurück zum Zitat Q.B. Meng, S.Y. Zhang, The bond ionicity in RBa2Cu3O7. J. Phys-Condens. Mater. 10, 85–88 (1998).CrossRef Q.B. Meng, S.Y. Zhang, The bond ionicity in RBa2Cu3O7. J. Phys-Condens. Mater. 10, 85–88 (1998).CrossRef
17.
Zurück zum Zitat Z.J. Wu, S.Y. Zhang, Semiempirical study on the valences of Cu and bond covalency in Y1-xCaxBa2Cu3O6 + y. Phys. Rev. B 58, 958–962 (1998)CrossRef Z.J. Wu, S.Y. Zhang, Semiempirical study on the valences of Cu and bond covalency in Y1-xCaxBa2Cu3O6 + y. Phys. Rev. B 58, 958–962 (1998)CrossRef
18.
Zurück zum Zitat J.X. Bi, H.T. Wu, Correlation of crystal structure and microwave dielectric characteristics of temperature stable Zn1-xMnxZrNb2O8 (0.02 ≤ x ≤ 0.1) ceramics. Ceram. Int. 43, 92–98 (2017)CrossRef J.X. Bi, H.T. Wu, Correlation of crystal structure and microwave dielectric characteristics of temperature stable Zn1-xMnxZrNb2O8 (0.02 ≤ x ≤ 0.1) ceramics. Ceram. Int. 43, 92–98 (2017)CrossRef
19.
Zurück zum Zitat B. Tang, Y.X. Li, Structure and microwave dielectric properties of (Zn0.3Co0.7)Ti1-xSnxO3 ceramics. J. Mater. Sci. 26, 2795–2799 (2015) B. Tang, Y.X. Li, Structure and microwave dielectric properties of (Zn0.3Co0.7)Ti1-xSnxO3 ceramics. J. Mater. Sci. 26, 2795–2799 (2015)
20.
Zurück zum Zitat M. Xiao, Z.Q. Zhou, Influence of molybdenum substitution on the microwave dielectric properties of CaWO4 ceramic. J. Mater. Sci. 1, 1–6 (2017) M. Xiao, Z.Q. Zhou, Influence of molybdenum substitution on the microwave dielectric properties of CaWO4 ceramic. J. Mater. Sci. 1, 1–6 (2017)
21.
Zurück zum Zitat W.S. Xia, L.X. Li, Relationship between bond iconicity, lattice energy and microwave dielectric properties of Zn(Ta1-xNbx)2O6 ceramics. J. Am. Ceram. Soc. 95, 2587–2592 (2012)CrossRef W.S. Xia, L.X. Li, Relationship between bond iconicity, lattice energy and microwave dielectric properties of Zn(Ta1-xNbx)2O6 ceramics. J. Am. Ceram. Soc. 95, 2587–2592 (2012)CrossRef
22.
Zurück zum Zitat P. Zhang, L. Liu, Low temperature sintering and microwave dielectric properties of Li3Mg2NbO6 ceramics for LTCC application. J. Mater. Sci. 28, 5802–5806 (2017) P. Zhang, L. Liu, Low temperature sintering and microwave dielectric properties of Li3Mg2NbO6 ceramics for LTCC application. J. Mater. Sci. 28, 5802–5806 (2017)
23.
Zurück zum Zitat P. Zhang, H. Xie, Microwave dielectric properties of low loss Li2(Mg0.95A0.05)3TiO6 (A = Ca2+,Ni2+,Zn2+,Mn2+) ceramics system. J. Alloy Compd. 689, 246–249 (2016)CrossRef P. Zhang, H. Xie, Microwave dielectric properties of low loss Li2(Mg0.95A0.05)3TiO6 (A = Ca2+,Ni2+,Zn2+,Mn2+) ceramics system. J. Alloy Compd. 689, 246–249 (2016)CrossRef
24.
Zurück zum Zitat H.T. Wu, E.S. Kim, Characterization of crystal structure and microwave dielectric properties of AZrNb2O8 (A = Zn, Co, Mg, Mn) ceramics based on complex bond theory. Ceram. Int. 42, 5785–5791 (2016)CrossRef H.T. Wu, E.S. Kim, Characterization of crystal structure and microwave dielectric properties of AZrNb2O8 (A = Zn, Co, Mg, Mn) ceramics based on complex bond theory. Ceram. Int. 42, 5785–5791 (2016)CrossRef
25.
Zurück zum Zitat P. Zhang, Y.G. Zhao, The correlation among bond ionicity, lattice energy and microwave dielectric properties of (Nd1-xLax)NbO4 ceramics. Phys. Chem. Chem. Phys. 17, 16692–16698 (2015)CrossRef P. Zhang, Y.G. Zhao, The correlation among bond ionicity, lattice energy and microwave dielectric properties of (Nd1-xLax)NbO4 ceramics. Phys. Chem. Chem. Phys. 17, 16692–16698 (2015)CrossRef
26.
Zurück zum Zitat I.M. Reaney, Dielectric and structural characteristics of Ba- and Sr-based complex perovskites as a function of tolerance factor. Jpn. J. Appl. Phys. 33, 3984–3990 (1994)CrossRef I.M. Reaney, Dielectric and structural characteristics of Ba- and Sr-based complex perovskites as a function of tolerance factor. Jpn. J. Appl. Phys. 33, 3984–3990 (1994)CrossRef
27.
Zurück zum Zitat Y.R. Luo, Comprehensive Handbook of Chemical Bond Energies (CRC Press, Boca Raton, 2007)CrossRef Y.R. Luo, Comprehensive Handbook of Chemical Bond Energies (CRC Press, Boca Raton, 2007)CrossRef
28.
Zurück zum Zitat R.T. Sanderson, Electronegativity and bond energy. J. Am. Ceram. Soc. 105, 2259–2261 (2002) R.T. Sanderson, Electronegativity and bond energy. J. Am. Ceram. Soc. 105, 2259–2261 (2002)
Metadaten
Titel
Effect of Ni2+ substitution on crystal structure and microwave dielectric properties for MgZrNb2O8 ceramics
verfasst von
Mi Xiao
Jie Lou
Yanshuang Wei
Hongrui Sun
Lei Li
Ping Zhang
Publikationsdatum
12.10.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 2/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-7996-x

Weitere Artikel der Ausgabe 2/2018

Journal of Materials Science: Materials in Electronics 2/2018 Zur Ausgabe

Neuer Inhalt