Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 6/2018

09.12.2017

Effect of deep cryogenic treatment on mechanical properties and microstructure of Sn3.0Ag0.5Cu solder

verfasst von: Yao Yao, Xiao Li, Xu He

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of deep cryogenic treatment on the performance of steels and alloys has attracted wide attention in the past decades. Deep cryogenic treatment can improve the strength and hardness of steel at room temperature, provide microstructure stability and improve wear or fatigue resistance of material. In the current study, the effect of deep cryogenic treatment on the microstructure and mechanical properties of Sn3.0Ag0.5Cu solders are investigated. The influence to microstructure, tensile strength and ductility improvement are discussed. Experimental analysis shows that the tensile strength of Sn3.0Ag0.5Cu solder increases from 36.76 to 46.27 MPa after 600 h of deep cryogenic treatment at 77 K (− 196 °C), the observed strength-time relation is similar to the Taylor theory for the yield strength and dislocation density. Large particles presented in the fracture of Sn3.0Ag0.5Cu samples are caused by the high cooling rate as well as the concentration difference between the β-Sn and the eutectic system. The precipitated Ag3Sn particles exhibit relatively uniform distribution in deep cryogenic treated Sn-rich matrix, and the size of Ag3Sn particles becomes smaller with longer deep cryogenic treatment time. It is noted that deep cryogenic treatment can increase the internal stress and the dislocation density, higher dislocation density and good ductility lead to movement of the pre-existing dislocations and specific dislocation configurations. Microscopic experiments on solder joints were performed to investigate the microstructure change. The Intermetallic layers were measured which showed negligible change in thickness. A unified creep and plasticity constitutive model is proposed to simulate the stress–strain relationship under deep cryogenic treatment, the predictions show good agreement compared with experimental results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Kalia, S.Y. Fu, Cryogenic Processing: State of the Art, Advantages and Applications (Springer, Berlin, 2013) S. Kalia, S.Y. Fu, Cryogenic Processing: State of the Art, Advantages and Applications (Springer, Berlin, 2013)
2.
Zurück zum Zitat D.N. Collins, Classic contributions: cryogenic treatment Deep cryogenic treatment of tool steels: a review. Int. Heat Treat. Surf. Eng. 2, 147–149 (1996)CrossRef D.N. Collins, Classic contributions: cryogenic treatment Deep cryogenic treatment of tool steels: a review. Int. Heat Treat. Surf. Eng. 2, 147–149 (1996)CrossRef
3.
Zurück zum Zitat A. Molinari, M. Pellizzari, S. Gialanella, G. Straffelini, K.H. Stiasny, Effect of deep cryogenic treatment on the mechanical properties of tool steels. J. Mater. Process. Technol. 118, 350–355 (2001)CrossRef A. Molinari, M. Pellizzari, S. Gialanella, G. Straffelini, K.H. Stiasny, Effect of deep cryogenic treatment on the mechanical properties of tool steels. J. Mater. Process. Technol. 118, 350–355 (2001)CrossRef
4.
Zurück zum Zitat M. Koneshlou, K.M. Asl, F. Khomamizadeh, Effect of cryogenic treatment on microstructure, mechanical and wear behaviors of AISI H13 hot work tool steel. Cryogenics 51, 55–61 (2011)CrossRef M. Koneshlou, K.M. Asl, F. Khomamizadeh, Effect of cryogenic treatment on microstructure, mechanical and wear behaviors of AISI H13 hot work tool steel. Cryogenics 51, 55–61 (2011)CrossRef
5.
Zurück zum Zitat J.Y. Huang, Y.T. Zhu, X.Z. Liao, I.J. Beyerlein, M.A. Bourke, T.E. Mitchell, Microstructure of cryogenic treated M2 tool steel. Mater. Sci. Eng. A 339, 241–244 (2003)CrossRef J.Y. Huang, Y.T. Zhu, X.Z. Liao, I.J. Beyerlein, M.A. Bourke, T.E. Mitchell, Microstructure of cryogenic treated M2 tool steel. Mater. Sci. Eng. A 339, 241–244 (2003)CrossRef
6.
Zurück zum Zitat A. Bensely, D. Senthilkumar, D.M. Lal, G. Nagarajan, A. Rajadurai, Effect of cryogenic treatment on tensile behavior of case carburized steel-815M17. Mater. Charact. 58, 485–491 (2007)CrossRef A. Bensely, D. Senthilkumar, D.M. Lal, G. Nagarajan, A. Rajadurai, Effect of cryogenic treatment on tensile behavior of case carburized steel-815M17. Mater. Charact. 58, 485–491 (2007)CrossRef
7.
Zurück zum Zitat D. Das, A.K. Dutta, K.K. Ray, Influence of varied cryo-treatment on the wear behavior of AISI D2 steel. Wear 266, 297–309 (2009)CrossRef D. Das, A.K. Dutta, K.K. Ray, Influence of varied cryo-treatment on the wear behavior of AISI D2 steel. Wear 266, 297–309 (2009)CrossRef
8.
Zurück zum Zitat R.F. Barron, Cryogenic treatment of metals to improve wear resistance. Cryogenics 22, 409–413 (1982)CrossRef R.F. Barron, Cryogenic treatment of metals to improve wear resistance. Cryogenics 22, 409–413 (1982)CrossRef
9.
Zurück zum Zitat S.S. Gill, J. Singh, R. Singh, H. Singh, Metallurgical principles of cryogenically treated tool steels—a review on the current state of science. Int. J. Adv. Manuf. Technol. 54, 59–82 (2011)CrossRef S.S. Gill, J. Singh, R. Singh, H. Singh, Metallurgical principles of cryogenically treated tool steels—a review on the current state of science. Int. J. Adv. Manuf. Technol. 54, 59–82 (2011)CrossRef
10.
Zurück zum Zitat V.G. Gavriljuk, V.A. Sirosh, Y.N. Petrov, A.I. Tyshchenko, W. Theisen, A. Kortmann, Carbide precipitation during tempering of a tool steel subjected to deep cryogenic treatment. Metall. Mater. Trans. A 45, 2453–2465 (2014)CrossRef V.G. Gavriljuk, V.A. Sirosh, Y.N. Petrov, A.I. Tyshchenko, W. Theisen, A. Kortmann, Carbide precipitation during tempering of a tool steel subjected to deep cryogenic treatment. Metall. Mater. Trans. A 45, 2453–2465 (2014)CrossRef
11.
Zurück zum Zitat M. Villa, K. Pantleon, M.A.J. Somers, Enhanced carbide precipitation during tempering of subzero Celsius treated AISI 52100 bearing steel in Proceedings of the Heat and Surface Engineering Conference and Expo, 2013 M. Villa, K. Pantleon, M.A.J. Somers, Enhanced carbide precipitation during tempering of subzero Celsius treated AISI 52100 bearing steel in Proceedings of the Heat and Surface Engineering Conference and Expo, 2013
12.
Zurück zum Zitat V.G. Gavriljuk, W. Theisen, V.V. Sirosh, E.V. Polshin, A. Kortmann, G.S. Mogilny et al., Low-temperature martensitic transformation in tool steels in relation to their deep cryogenic treatment. Acta Mater. 61, 1705–1715 (2013)CrossRef V.G. Gavriljuk, W. Theisen, V.V. Sirosh, E.V. Polshin, A. Kortmann, G.S. Mogilny et al., Low-temperature martensitic transformation in tool steels in relation to their deep cryogenic treatment. Acta Mater. 61, 1705–1715 (2013)CrossRef
13.
Zurück zum Zitat M. Preciado, M. Pellizzari, Influence of deep cryogenic treatment on the thermal decomposition of Fe–C martensite. J. Mater. Sci. 49, 8183–8191 (2014)CrossRef M. Preciado, M. Pellizzari, Influence of deep cryogenic treatment on the thermal decomposition of Fe–C martensite. J. Mater. Sci. 49, 8183–8191 (2014)CrossRef
14.
Zurück zum Zitat K.M. Asl, A. Tari, F. Khomamizadeh, Effect of deep cryogenic treatment on microstructure, creep and wear behaviors of AZ91 magnesium alloy. Mater. Sci. Eng. A 523, 27–31 (2009)CrossRef K.M. Asl, A. Tari, F. Khomamizadeh, Effect of deep cryogenic treatment on microstructure, creep and wear behaviors of AZ91 magnesium alloy. Mater. Sci. Eng. A 523, 27–31 (2009)CrossRef
15.
Zurück zum Zitat W. Dai, S. Liang, Y. Wang, Effects of Cryogenic treatment on microstructure and properties of W-10 wt%Ti alloy. Rare Metal Mater. Eng. 44, 2290–2294 (2015)CrossRef W. Dai, S. Liang, Y. Wang, Effects of Cryogenic treatment on microstructure and properties of W-10 wt%Ti alloy. Rare Metal Mater. Eng. 44, 2290–2294 (2015)CrossRef
16.
Zurück zum Zitat R. Fu, C. Yuan, Y. Wang, D. Sang, Y. Li, L. Jing et al., Effects of deep cryogenic treatment on the microstructure and mechanical properties of commercial pure zirconium. J. Alloys Compd. 619, 513–519 (2015)CrossRef R. Fu, C. Yuan, Y. Wang, D. Sang, Y. Li, L. Jing et al., Effects of deep cryogenic treatment on the microstructure and mechanical properties of commercial pure zirconium. J. Alloys Compd. 619, 513–519 (2015)CrossRef
17.
Zurück zum Zitat S.V. Ketov, Y.H. Sun, S. Nachum, Z. Lu, A. Checchi, A.R. Beraldin et al., Rejuvenation of metallic glasses by non-affine thermal strain. Nature 524, 200 (2015)CrossRef S.V. Ketov, Y.H. Sun, S. Nachum, Z. Lu, A. Checchi, A.R. Beraldin et al., Rejuvenation of metallic glasses by non-affine thermal strain. Nature 524, 200 (2015)CrossRef
18.
Zurück zum Zitat ASM International, Mechanical Testing and Evaluation, vol. 8 (ASM International, Materials Park, 2000) ASM International, Mechanical Testing and Evaluation, vol. 8 (ASM International, Materials Park, 2000)
19.
Zurück zum Zitat F. Ren, J.W. Nah, K.N. Tu, B. Xiong, L. Xu, J.H.L. Pang, Electromigration induced ductile-to-brittle transition in lead-free solder joints. Appl. Phys. Lett. 89, 1679–1672 (2006) F. Ren, J.W. Nah, K.N. Tu, B. Xiong, L. Xu, J.H.L. Pang, Electromigration induced ductile-to-brittle transition in lead-free solder joints. Appl. Phys. Lett. 89, 1679–1672 (2006)
20.
Zurück zum Zitat R.W. Cahn, P. Haasen, E.J. Kramer, Materials Science and Technology, Materials Science and Technology—A Comprehensive Treatment: Index of Volume 1–18 (Wiley, New York, 1998) R.W. Cahn, P. Haasen, E.J. Kramer, Materials Science and Technology, Materials Science and Technology—A Comprehensive Treatment: Index of Volume 1–18 (Wiley, New York, 1998)
21.
Zurück zum Zitat Y. Ding, C. Wang, Y. Tian, M. Li, Influence of aging treatment on deformation behavior of 96.5Sn3.5Ag lead-free solder alloy during in situ tensile tests. J. Alloys Compd. 428, 274–285 (2007)CrossRef Y. Ding, C. Wang, Y. Tian, M. Li, Influence of aging treatment on deformation behavior of 96.5Sn3.5Ag lead-free solder alloy during in situ tensile tests. J. Alloys Compd. 428, 274–285 (2007)CrossRef
22.
Zurück zum Zitat H. Ma, J.C. Suhling, P. Lall, M.J. Bozack, Effects of physical aging on the stress-strain and creep behaviors of lead free solders, in International Symposium on Advanced Packaging Materials: Processes, Properties and Interface, 2013, pp. 150–150 H. Ma, J.C. Suhling, P. Lall, M.J. Bozack, Effects of physical aging on the stress-strain and creep behaviors of lead free solders, in International Symposium on Advanced Packaging Materials: Processes, Properties and Interface, 2013, pp. 150–150
23.
Zurück zum Zitat W.D. Callister Jr., Fundamentals of Materials Science and Engineering: An Integrated Approach, 2nd edn. (Wiley, New York, 2004), p. 252 W.D. Callister Jr., Fundamentals of Materials Science and Engineering: An Integrated Approach, 2nd edn. (Wiley, New York, 2004), p. 252
24.
Zurück zum Zitat F. Ochoa, J.J. Williams, N. Chawla, The effects of cooling rate on microstructure and mechanical behavior of Sn-3.5Ag solder. JOM 55, 56–60 (2003)CrossRef F. Ochoa, J.J. Williams, N. Chawla, The effects of cooling rate on microstructure and mechanical behavior of Sn-3.5Ag solder. JOM 55, 56–60 (2003)CrossRef
25.
Zurück zum Zitat L. Mo, Z. Chen, F. Wu, C. Liu, Microstructural and mechanical analysis on Cu–Sn intermetallic micro-joints under isothermal condition. Intermetallics 66, 13–21 (2015)CrossRef L. Mo, Z. Chen, F. Wu, C. Liu, Microstructural and mechanical analysis on Cu–Sn intermetallic micro-joints under isothermal condition. Intermetallics 66, 13–21 (2015)CrossRef
26.
Zurück zum Zitat Y. Yao, X. He, L.M. Keer, M.E. Fine, A continuum damage mechanics-based unified creep and plasticity model for solder materials. Acta Mater. 83, 160–168 (2015)CrossRef Y. Yao, X. He, L.M. Keer, M.E. Fine, A continuum damage mechanics-based unified creep and plasticity model for solder materials. Acta Mater. 83, 160–168 (2015)CrossRef
27.
Zurück zum Zitat X. He, Y. Yao, A dislocation density based viscoplastic constitutive model for lead free solder under drop impact. Int. J. Solids Struct. 120, 236–244 (2017)CrossRef X. He, Y. Yao, A dislocation density based viscoplastic constitutive model for lead free solder under drop impact. Int. J. Solids Struct. 120, 236–244 (2017)CrossRef
28.
Zurück zum Zitat Y. Yao, R. An, X. Long, Effect of electric current on fracture and constitutive behavior of SN-Ag-Cu solder joints. Eng. Fract. Mech. 171, 85–97 (2017)CrossRef Y. Yao, R. An, X. Long, Effect of electric current on fracture and constitutive behavior of SN-Ag-Cu solder joints. Eng. Fract. Mech. 171, 85–97 (2017)CrossRef
Metadaten
Titel
Effect of deep cryogenic treatment on mechanical properties and microstructure of Sn3.0Ag0.5Cu solder
verfasst von
Yao Yao
Xiao Li
Xu He
Publikationsdatum
09.12.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 6/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-8400-6

Weitere Artikel der Ausgabe 6/2018

Journal of Materials Science: Materials in Electronics 6/2018 Zur Ausgabe

Neuer Inhalt