Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 6/2021

20.02.2021

Electrochemical performance of lanthanum cerium ferrite nanoparticles for supercapacitor applications

verfasst von: Waseem Raza, Ghulam Nabi, Asim Shahzad, Nafisa Malik, Nadeem Raza

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Lanthanum cerium ferrite nanoparticles has been synthesized for the first time via hydrothermal and co-precipitation method. The structural and morphological study of the nanoparticles have been examined using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). The electrochemical study of J1 and J2 electrodes have been examined using three electrode system in 6 M KOH electrolyte using cyclic voltammetry (CV), galvanostatic charging-discharging (GCD) and electrochemical impendence spectroscopy (EIS). The highest specific capacitance of 1195 F/g has been obtained at a scan rate of 10 mV/s from hydrothermal synthesis nanomaterial electrode (J2) and long cycling life 92.3% retention after 2000th cycles. Furthermore, the energy density and power density of the J2 electrode at a current density of 5 A/g was 59 Wh/kg and 9234 W/kg, respectively. Hence, the fabricated J2 electrode is a favorable candidate for super-capacitor applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T. Zou et al., Improvement of the electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 cathode material by Al2O3 surface coating. J. Electroanal. Chem. 859, 113845 (2020)CrossRef T. Zou et al., Improvement of the electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 cathode material by Al2O3 surface coating. J. Electroanal. Chem. 859, 113845 (2020)CrossRef
2.
Zurück zum Zitat J. Khan, U. Nasir, Voltage stabilization of hybrid micro-grid using super capacitors. J. Power Energy Eng. 3(06), 1 (2015)CrossRef J. Khan, U. Nasir, Voltage stabilization of hybrid micro-grid using super capacitors. J. Power Energy Eng. 3(06), 1 (2015)CrossRef
3.
Zurück zum Zitat G. Nabi et al., Cogent synergic effect of TiS2/g-C3N4 composite with enhanced electrochemical performance for supercapacitor. Ceram. Int. 46(17), 27601–27607 (2020)CrossRef G. Nabi et al., Cogent synergic effect of TiS2/g-C3N4 composite with enhanced electrochemical performance for supercapacitor. Ceram. Int. 46(17), 27601–27607 (2020)CrossRef
4.
Zurück zum Zitat A. Afzal et al., Polypyrrole/carbon nanotube supercapacitors: technological advances and challenges. J. Power Sources 352, 174–186 (2017)CrossRef A. Afzal et al., Polypyrrole/carbon nanotube supercapacitors: technological advances and challenges. J. Power Sources 352, 174–186 (2017)CrossRef
5.
Zurück zum Zitat B. Lobato et al., Capacitance and surface of carbons in supercapacitors. Carbon 122, 434–445 (2017)CrossRef B. Lobato et al., Capacitance and surface of carbons in supercapacitors. Carbon 122, 434–445 (2017)CrossRef
6.
Zurück zum Zitat N. Soin et al., Nanocrystalline ruthenium oxide dispersed few layered graphene (FLG) nanoflakes as supercapacitor electrodes. J. Mater. Chem. 22(30), 14944–14950 (2012)CrossRef N. Soin et al., Nanocrystalline ruthenium oxide dispersed few layered graphene (FLG) nanoflakes as supercapacitor electrodes. J. Mater. Chem. 22(30), 14944–14950 (2012)CrossRef
7.
Zurück zum Zitat Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45(21), 5925–5950 (2016)CrossRef Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45(21), 5925–5950 (2016)CrossRef
8.
Zurück zum Zitat S. Wang et al., Facile preparation of Ni–Mn layered double hydroxide nanosheets/carbon for supercapacitor. J. Mater. Sci.: Mater. Electron. 30(8), 7524–7533 (2019) S. Wang et al., Facile preparation of Ni–Mn layered double hydroxide nanosheets/carbon for supercapacitor. J. Mater. Sci.: Mater. Electron. 30(8), 7524–7533 (2019)
9.
Zurück zum Zitat H. Hosseini, S. Shahrokhian, Vanadium dioxide-anchored porous carbon nanofibers as a Na+ intercalation pseudocapacitance material for development of flexible and super light electrochemical energy storage systems. Appl. Mater. Today 10, 72–85 (2018)CrossRef H. Hosseini, S. Shahrokhian, Vanadium dioxide-anchored porous carbon nanofibers as a Na+ intercalation pseudocapacitance material for development of flexible and super light electrochemical energy storage systems. Appl. Mater. Today 10, 72–85 (2018)CrossRef
10.
Zurück zum Zitat T. Brousse, D. Bélanger, J.W. Long, To be or not to be pseudocapacitive? J. Electrochem. Soc. 162(5), A5185–A5189 (2015)CrossRef T. Brousse, D. Bélanger, J.W. Long, To be or not to be pseudocapacitive? J. Electrochem. Soc. 162(5), A5185–A5189 (2015)CrossRef
11.
Zurück zum Zitat S. Devaraj, N. Munichandraiah, High capacitance of electrodeposited MnO2 by the effect of a surface-active agent. Electrochem. Solid-State Lett. 8(7), A373–A377 (2005)CrossRef S. Devaraj, N. Munichandraiah, High capacitance of electrodeposited MnO2 by the effect of a surface-active agent. Electrochem. Solid-State Lett. 8(7), A373–A377 (2005)CrossRef
12.
Zurück zum Zitat M. Toupin, T. Brousse, D. Bélanger, Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chem. Mater. 14(9), 3946–3952 (2002)CrossRef M. Toupin, T. Brousse, D. Bélanger, Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chem. Mater. 14(9), 3946–3952 (2002)CrossRef
13.
Zurück zum Zitat J. Qi et al., Facile synthesis of N-doped activated carbon derived from cotton and CuCo2O4 nanoneedle arrays electrodes for all-solid-state asymmetric supercapacitor. J. Mater. Sci.: Mater. Electron. 30(10), 9877–9887 (2019) J. Qi et al., Facile synthesis of N-doped activated carbon derived from cotton and CuCo2O4 nanoneedle arrays electrodes for all-solid-state asymmetric supercapacitor. J. Mater. Sci.: Mater. Electron. 30(10), 9877–9887 (2019)
14.
Zurück zum Zitat J.-Y. Shieh et al., High-performance flexible supercapacitor based on porous array electrodes. Mater. Chem. Phys. 195, 114–122 (2017)CrossRef J.-Y. Shieh et al., High-performance flexible supercapacitor based on porous array electrodes. Mater. Chem. Phys. 195, 114–122 (2017)CrossRef
15.
Zurück zum Zitat A.M. Obeidat, M.A. Gharaibeh, M. Obaidat, Solid-state supercapacitors with ionic liquid gel polymer electrolyte and polypyrrole electrodes for electrical energy storage. J. Energy Storage 13, 123–128 (2017)CrossRef A.M. Obeidat, M.A. Gharaibeh, M. Obaidat, Solid-state supercapacitors with ionic liquid gel polymer electrolyte and polypyrrole electrodes for electrical energy storage. J. Energy Storage 13, 123–128 (2017)CrossRef
16.
Zurück zum Zitat L. Gonsalves, S. Mojumdar, V. Verenkar, Synthesis and characterization of Co0.8Zn0.2Fe2O4 nanoparticles. J. Therm. Anal. Calorim. 104(3), 869–873 (2011)CrossRef L. Gonsalves, S. Mojumdar, V. Verenkar, Synthesis and characterization of Co0.8Zn0.2Fe2O4 nanoparticles. J. Therm. Anal. Calorim. 104(3), 869–873 (2011)CrossRef
17.
Zurück zum Zitat P. Rao, R. Godbole, S. Bhagwat, Copper doped nickel ferrite nano-crystalline thin films: a potential gas sensor towards reducing gases. Mater. Chem. Phys. 171, 260–266 (2016)CrossRef P. Rao, R. Godbole, S. Bhagwat, Copper doped nickel ferrite nano-crystalline thin films: a potential gas sensor towards reducing gases. Mater. Chem. Phys. 171, 260–266 (2016)CrossRef
18.
Zurück zum Zitat R. Sebastian et al., Structural and dielectric studies of Cr3+ doped ZnFe2O4 nanoparticles. Nano Stud. 8, 121–130 (2013) R. Sebastian et al., Structural and dielectric studies of Cr3+ doped ZnFe2O4 nanoparticles. Nano Stud. 8, 121–130 (2013)
19.
Zurück zum Zitat C.-S. Hwang, N.-C. Wang, Preparation and characteristics of ferrite catalysts for reduction of CO2. Mater. Chem. Phys. 88(2–3), 258–263 (2004)CrossRef C.-S. Hwang, N.-C. Wang, Preparation and characteristics of ferrite catalysts for reduction of CO2. Mater. Chem. Phys. 88(2–3), 258–263 (2004)CrossRef
20.
Zurück zum Zitat A. Manikandan et al., Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method. Superlattices Microstruct. 64, 118–131 (2013)CrossRef A. Manikandan et al., Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method. Superlattices Microstruct. 64, 118–131 (2013)CrossRef
21.
Zurück zum Zitat M. Khandekar et al., Nanocrystalline Ce doped CoFe2O4 as an acetone gas sensor. Ceram. Int. 40(1), 447–452 (2014)CrossRef M. Khandekar et al., Nanocrystalline Ce doped CoFe2O4 as an acetone gas sensor. Ceram. Int. 40(1), 447–452 (2014)CrossRef
22.
Zurück zum Zitat Y. Lin et al., Deposition of polyaniline on porous ZnFe2O4 as electrode for enhanced performance supercapacitor. J. Mater. Sci.: Mater. Electron. 29(19), 16369–16377 (2018) Y. Lin et al., Deposition of polyaniline on porous ZnFe2O4 as electrode for enhanced performance supercapacitor. J. Mater. Sci.: Mater. Electron. 29(19), 16369–16377 (2018)
23.
Zurück zum Zitat A.B. Bodade et al., Conduction mechanism and gas sensing properties of CoFe2O4 nanocomposite thick films for H2S gas. Talanta 89, 183–188 (2012)CrossRef A.B. Bodade et al., Conduction mechanism and gas sensing properties of CoFe2O4 nanocomposite thick films for H2S gas. Talanta 89, 183–188 (2012)CrossRef
24.
Zurück zum Zitat V. Kumbhar et al., Chemical synthesis of spinel cobalt ferrite (CoFe2O4) nano-flakes for supercapacitor application. Appl. Surf. Sci. 259, 39–43 (2012)CrossRef V. Kumbhar et al., Chemical synthesis of spinel cobalt ferrite (CoFe2O4) nano-flakes for supercapacitor application. Appl. Surf. Sci. 259, 39–43 (2012)CrossRef
25.
Zurück zum Zitat P. He et al., Reduced graphene oxide-CoFe2O4 composites for supercapacitor electrode. Russ. J. Electrochem. 49(4), 359–364 (2013)CrossRef P. He et al., Reduced graphene oxide-CoFe2O4 composites for supercapacitor electrode. Russ. J. Electrochem. 49(4), 359–364 (2013)CrossRef
26.
Zurück zum Zitat Y.X. Zhang et al., One-pot controllable synthesis of flower-like CoFe2O4/FeOOH nanocomposites for high-performance supercapacitors. Mater. Lett. 123, 229–234 (2014)CrossRef Y.X. Zhang et al., One-pot controllable synthesis of flower-like CoFe2O4/FeOOH nanocomposites for high-performance supercapacitors. Mater. Lett. 123, 229–234 (2014)CrossRef
27.
Zurück zum Zitat P. Xiong, H. Huang, X. Wang, Design and synthesis of ternary cobalt ferrite/graphene/polyaniline hierarchical nanocomposites for high-performance supercapacitors. J. Power Sources 245, 937–946 (2014)CrossRef P. Xiong, H. Huang, X. Wang, Design and synthesis of ternary cobalt ferrite/graphene/polyaniline hierarchical nanocomposites for high-performance supercapacitors. J. Power Sources 245, 937–946 (2014)CrossRef
28.
Zurück zum Zitat J. Huang et al., Effect of Al-doped β-Ni (OH) 2 nanosheets on electrochemical behaviors for high performance supercapacitor application. J. Power Sources 232, 370–375 (2013)CrossRef J. Huang et al., Effect of Al-doped β-Ni (OH) 2 nanosheets on electrochemical behaviors for high performance supercapacitor application. J. Power Sources 232, 370–375 (2013)CrossRef
29.
Zurück zum Zitat N. Ghassemi, S.S.H. Davarani, H.R. Moazami, Cathodic electrosynthesis of CuFe2O4/CuO composite nanostructures for high performance supercapacitor applications. J. Mater. Sci.: Mater. Electron. 29(15), 12573–12583 (2018) N. Ghassemi, S.S.H. Davarani, H.R. Moazami, Cathodic electrosynthesis of CuFe2O4/CuO composite nanostructures for high performance supercapacitor applications. J. Mater. Sci.: Mater. Electron. 29(15), 12573–12583 (2018)
30.
Zurück zum Zitat E. Rios et al., Mixed valency spinel oxides of transition metals and electrocatalysis: case of the MnxCo3−xO4 system. Electrochim. Acta 44(8–9), 1491–1497 (1998)CrossRef E. Rios et al., Mixed valency spinel oxides of transition metals and electrocatalysis: case of the MnxCo3−xO4 system. Electrochim. Acta 44(8–9), 1491–1497 (1998)CrossRef
31.
Zurück zum Zitat Z. Du et al., Electrocatalytic performances of LaNi1−xMgxO3 perovskite oxides as bi-functional catalysts for lithium air batteries. J. Power Sources 265, 91–96 (2014)CrossRef Z. Du et al., Electrocatalytic performances of LaNi1−xMgxO3 perovskite oxides as bi-functional catalysts for lithium air batteries. J. Power Sources 265, 91–96 (2014)CrossRef
32.
Zurück zum Zitat M. De Koninck, S.-C. Poirier, B. Marsan, CuxCo3−xO4 used as bifunctional electrocatalyst physicochemical properties and electrochemical characterization for the oxygen evolution reaction. J. Electrochem. Soc. 153(11), A2103–A2110 (2006) M. De Koninck, S.-C. Poirier, B. Marsan, CuxCo3−xO4 used as bifunctional electrocatalyst physicochemical properties and electrochemical characterization for the oxygen evolution reaction. J. Electrochem. Soc. 153(11), A2103–A2110 (2006)
33.
Zurück zum Zitat A.M. Abu-Dief et al., Effect of chromium substitution on the structural and magnetic properties of nanocrystalline zinc ferrite. Mater. Chem. Phys. 174, 164–171 (2016)CrossRef A.M. Abu-Dief et al., Effect of chromium substitution on the structural and magnetic properties of nanocrystalline zinc ferrite. Mater. Chem. Phys. 174, 164–171 (2016)CrossRef
34.
Zurück zum Zitat S.S.S. Afghahi et al., Single and double-layer composite microwave absorbers with hexaferrite BaZn0.6Zr0.3X0.3Fe10.8O19 (X= Ti, Ce, Sn) powders. Mater. Chem. Phys. 186, 584–591 (2017)CrossRef S.S.S. Afghahi et al., Single and double-layer composite microwave absorbers with hexaferrite BaZn0.6Zr0.3X0.3Fe10.8O19 (X= Ti, Ce, Sn) powders. Mater. Chem. Phys. 186, 584–591 (2017)CrossRef
35.
Zurück zum Zitat W. Shaheen, Effects of thermal treatment and doping with cobalt and manganese oxides on surface and catalytic properties of ferric oxide. Mater. Chem. Phys. 101(1), 182–190 (2007)CrossRef W. Shaheen, Effects of thermal treatment and doping with cobalt and manganese oxides on surface and catalytic properties of ferric oxide. Mater. Chem. Phys. 101(1), 182–190 (2007)CrossRef
36.
Zurück zum Zitat A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18), 3995–4021 (2005)CrossRef A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18), 3995–4021 (2005)CrossRef
37.
Zurück zum Zitat N. Nogueira et al., X-ray diffraction and Mossbauer studies on superparamagnetic nickel ferrite (NiFe2O4) obtained by the proteic sol–gel method. Mater. Chem. Phys. 163, 402–406 (2015)CrossRef N. Nogueira et al., X-ray diffraction and Mossbauer studies on superparamagnetic nickel ferrite (NiFe2O4) obtained by the proteic sol–gel method. Mater. Chem. Phys. 163, 402–406 (2015)CrossRef
38.
Zurück zum Zitat M. Islam et al., Electrical transport properties of CoZn ferrite–SiO2 composites prepared by co-precipitation technique. Mater. Chem. Phys. 109(2–3), 482–487 (2008)CrossRef M. Islam et al., Electrical transport properties of CoZn ferrite–SiO2 composites prepared by co-precipitation technique. Mater. Chem. Phys. 109(2–3), 482–487 (2008)CrossRef
39.
Zurück zum Zitat Z. Yang, Z. Li, Y. Yang, Structural and magnetic properties of plate-like W-type barium ferrites synthesized with a combination method of molten salt and sol–gel. Mater. Chem. Phys. 144(3), 568–574 (2014)CrossRef Z. Yang, Z. Li, Y. Yang, Structural and magnetic properties of plate-like W-type barium ferrites synthesized with a combination method of molten salt and sol–gel. Mater. Chem. Phys. 144(3), 568–574 (2014)CrossRef
40.
Zurück zum Zitat U. Kurtan et al., Synthesis and magneto-electrical properties of MFe2O4 (Co, Zn) nanoparticles by oleylamine route. Ceram. Int. 42(12), 13350–13358 (2016)CrossRef U. Kurtan et al., Synthesis and magneto-electrical properties of MFe2O4 (Co, Zn) nanoparticles by oleylamine route. Ceram. Int. 42(12), 13350–13358 (2016)CrossRef
41.
Zurück zum Zitat J. Töpfer, A. Angermann, Nanocrystalline magnetite and Mn–Zn ferrite particles via the polyol process: synthesis and magnetic properties. Mater. Chem. Phys. 129(1–2), 337–342 (2011)CrossRef J. Töpfer, A. Angermann, Nanocrystalline magnetite and Mn–Zn ferrite particles via the polyol process: synthesis and magnetic properties. Mater. Chem. Phys. 129(1–2), 337–342 (2011)CrossRef
42.
Zurück zum Zitat S. Bid, S. Pradhan, Preparation of zinc ferrite by high-energy ball-milling and microstructure characterization by Rietveld’s analysis. Mater. Chem. Phys. 82(1), 27–37 (2003)CrossRef S. Bid, S. Pradhan, Preparation of zinc ferrite by high-energy ball-milling and microstructure characterization by Rietveld’s analysis. Mater. Chem. Phys. 82(1), 27–37 (2003)CrossRef
43.
Zurück zum Zitat J. Rehman et al., Structural, magnetic and dielectric properties of terbium doped NiCoX strontium hexagonal nano-ferrites synthesized via micro-emulsion route. Ceram. Int. 42(7), 9079–9085 (2016)CrossRef J. Rehman et al., Structural, magnetic and dielectric properties of terbium doped NiCoX strontium hexagonal nano-ferrites synthesized via micro-emulsion route. Ceram. Int. 42(7), 9079–9085 (2016)CrossRef
44.
Zurück zum Zitat S. Azhagushanmugam, N. Suriyanarayanan, R. Jayaprakash, Magnetic properties of zinc-substituted cobalt ferric oxide nanoparticles: correlation with annealing temperature and particle size. Mater. Sci. Semicond. Process. 21, 33–37 (2014)CrossRef S. Azhagushanmugam, N. Suriyanarayanan, R. Jayaprakash, Magnetic properties of zinc-substituted cobalt ferric oxide nanoparticles: correlation with annealing temperature and particle size. Mater. Sci. Semicond. Process. 21, 33–37 (2014)CrossRef
45.
Zurück zum Zitat A. Schütz et al., High temperature (salt melt) corrosion tests with ceramic-coated steel. Mater. Chem. Phys. 159, 10–18 (2015)CrossRef A. Schütz et al., High temperature (salt melt) corrosion tests with ceramic-coated steel. Mater. Chem. Phys. 159, 10–18 (2015)CrossRef
46.
Zurück zum Zitat K. Bindu et al., Microwave assisted growth of stannous ferrite microcubes as electrodes for potentiometric nonenzymatic H2O2 sensor and supercapacitor applications. Electrochim. Acta 217, 139–149 (2016)CrossRef K. Bindu et al., Microwave assisted growth of stannous ferrite microcubes as electrodes for potentiometric nonenzymatic H2O2 sensor and supercapacitor applications. Electrochim. Acta 217, 139–149 (2016)CrossRef
47.
Zurück zum Zitat M.M. Vadiyar et al., Reflux condensation mediated deposition of Co3O4 nanosheets and ZnFe2O4 nanoflakes electrodes for flexible asymmetric supercapacitor. Electrochim. Acta 222, 1604–1615 (2016)CrossRef M.M. Vadiyar et al., Reflux condensation mediated deposition of Co3O4 nanosheets and ZnFe2O4 nanoflakes electrodes for flexible asymmetric supercapacitor. Electrochim. Acta 222, 1604–1615 (2016)CrossRef
48.
Zurück zum Zitat L. Liu et al., Binary cobalt ferrite nanomesh arrays as the advanced binder-free electrode for applications in oxygen evolution reaction and supercapacitors. J. Power Sources 327, 599–609 (2016)CrossRef L. Liu et al., Binary cobalt ferrite nanomesh arrays as the advanced binder-free electrode for applications in oxygen evolution reaction and supercapacitors. J. Power Sources 327, 599–609 (2016)CrossRef
49.
Zurück zum Zitat P. Xiong et al., Ternary manganese ferrite/graphene/polyaniline nanostructure with enhanced electrochemical capacitance performance. J. Power Sources 266, 384–392 (2014)CrossRef P. Xiong et al., Ternary manganese ferrite/graphene/polyaniline nanostructure with enhanced electrochemical capacitance performance. J. Power Sources 266, 384–392 (2014)CrossRef
50.
Zurück zum Zitat M. Sundararajan et al., Microwave combustion synthesis of zinc substituted nanocrystalline spinel cobalt ferrite: structural and magnetic studies. Mater. Sci. Semicond. Process. 40, 1–10 (2015)CrossRef M. Sundararajan et al., Microwave combustion synthesis of zinc substituted nanocrystalline spinel cobalt ferrite: structural and magnetic studies. Mater. Sci. Semicond. Process. 40, 1–10 (2015)CrossRef
51.
Zurück zum Zitat G. Nabi et al., Role of cerium-doping in CoFe2O4 electrodes for high performance supercapacitors. J. Energy Storage 29, 101452 (2020)CrossRef G. Nabi et al., Role of cerium-doping in CoFe2O4 electrodes for high performance supercapacitors. J. Energy Storage 29, 101452 (2020)CrossRef
52.
Zurück zum Zitat B. Bhujun, M.T. Tan, A.S. Shanmugam, Evaluation of aluminium doped spinel ferrite electrodes for supercapacitors. Ceram. Int. 42(5), 6457–6466 (2016)CrossRef B. Bhujun, M.T. Tan, A.S. Shanmugam, Evaluation of aluminium doped spinel ferrite electrodes for supercapacitors. Ceram. Int. 42(5), 6457–6466 (2016)CrossRef
53.
Zurück zum Zitat T. Gujar et al., Electrochemically deposited nanograin ruthenium oxide as a pseudocapacitive electrode. Int. J. Electrochem. Sci 2, 666–673 (2007) T. Gujar et al., Electrochemically deposited nanograin ruthenium oxide as a pseudocapacitive electrode. Int. J. Electrochem. Sci 2, 666–673 (2007)
54.
Zurück zum Zitat D. Pawar et al., Synthesis of nanocrystalline nickel–zinc ferrite (Ni0.8Zn0.2Fe2O4) thin films by chemical bath deposition method. J. Alloys Compd. 509(8), 3587–3591 (2011)CrossRef D. Pawar et al., Synthesis of nanocrystalline nickel–zinc ferrite (Ni0.8Zn0.2Fe2O4) thin films by chemical bath deposition method. J. Alloys Compd. 509(8), 3587–3591 (2011)CrossRef
55.
Zurück zum Zitat J. Hao et al., Facile synthesis of 3D hierarchical flower-like Co3-xFexO4 ferrite on nickel foam as high-performance electrodes for supercapacitors. Electrochim. Acta 152, 13–18 (2015)CrossRef J. Hao et al., Facile synthesis of 3D hierarchical flower-like Co3-xFexO4 ferrite on nickel foam as high-performance electrodes for supercapacitors. Electrochim. Acta 152, 13–18 (2015)CrossRef
56.
Zurück zum Zitat Z. Fan et al., Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Func. Mater. 21(12), 2366–2375 (2011)CrossRef Z. Fan et al., Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Func. Mater. 21(12), 2366–2375 (2011)CrossRef
57.
Zurück zum Zitat B. Bhujun, M.T. Tan, A.S. Shanmugam, Study of mixed ternary transition metal ferrites as potential electrodes for supercapacitor applications. Results Phys. 7, 345–353 (2017)CrossRef B. Bhujun, M.T. Tan, A.S. Shanmugam, Study of mixed ternary transition metal ferrites as potential electrodes for supercapacitor applications. Results Phys. 7, 345–353 (2017)CrossRef
58.
Zurück zum Zitat A.E. Elkholy, F.E.-T. Heakal, N.K. Allam, Nanostructured spinel manganese cobalt ferrite for high-performance supercapacitors. RSC Adv. 7(82), 51888–51895 (2017)CrossRef A.E. Elkholy, F.E.-T. Heakal, N.K. Allam, Nanostructured spinel manganese cobalt ferrite for high-performance supercapacitors. RSC Adv. 7(82), 51888–51895 (2017)CrossRef
59.
Zurück zum Zitat P. Guo et al., Electrochemical properties of colloidal nanocrystal assemblies of manganese ferrite as the electrode materials for supercapacitors. J. Mater. Sci. 52(9), 5359–5365 (2017)CrossRef P. Guo et al., Electrochemical properties of colloidal nanocrystal assemblies of manganese ferrite as the electrode materials for supercapacitors. J. Mater. Sci. 52(9), 5359–5365 (2017)CrossRef
Metadaten
Titel
Electrochemical performance of lanthanum cerium ferrite nanoparticles for supercapacitor applications
verfasst von
Waseem Raza
Ghulam Nabi
Asim Shahzad
Nafisa Malik
Nadeem Raza
Publikationsdatum
20.02.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 6/2021
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-05457-w

Weitere Artikel der Ausgabe 6/2021

Journal of Materials Science: Materials in Electronics 6/2021 Zur Ausgabe

Neuer Inhalt