Skip to main content
Erschienen in: Journal of Scientific Computing 1/2014

01.04.2014

The Relationships Between Chebyshev, Legendre and Jacobi Polynomials: The Generic Superiority of Chebyshev Polynomials and Three Important Exceptions

verfasst von: John P. Boyd, Rolfe Petschek

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We analyze the asymptotic rates of convergence of Chebyshev, Legendre and Jacobi polynomials. One complication is that there are many reasonable measures of optimality as enumerated here. Another is that there are at least three exceptions to the general principle that Chebyshev polynomials give the fastest rate of convergence from the larger family of Jacobi polynomials. When \(f(x)\) is singular at one or both endpoints, all Gegenbauer polynomials (including Legendre and Chebyshev) converge equally fast at the endpoints, but Gegenbauer polynomials converge more rapidly on the interior with increasing order \(m\). For functions on the surface of the sphere, associated Legendre functions, which are proportional to Gegenbauer polynomials, are best for the latitudinal dependence. Similarly, for functions on the unit disk, Zernike polynomials, which are Jacobi polynomials in radius, are superior in rate-of-convergence to a Chebyshev–Fourier series. It is true, as was conjectured by Lanczos 60 years ago, that excluding these exceptions, the Chebyshev coefficients \(a_{n}\) usually decrease faster than the Legendre coefficients \(b_{n}\) by a factor of \(\sqrt{n}\). We calculate the proportionality constant for a few examples and restrictive classes of functions. The more precise claim that \(b_{n} \sim \sqrt{\pi /2} \sqrt{n} a_{n}\), made by Lanczos and later Fox and Parker, is true only for rather special functions. However, individual terms in the large \(n\) asymptotics of Chebyshev and Legendre coefficients usually do display this proportionality.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Alpert, B.A., Rokhlin, V.: A fast algorithm for the evaluation of Legendre expansions. SIAM J. Sci. Comput. 12, 158–179 (1991)CrossRefMATHMathSciNet Alpert, B.A., Rokhlin, V.: A fast algorithm for the evaluation of Legendre expansions. SIAM J. Sci. Comput. 12, 158–179 (1991)CrossRefMATHMathSciNet
2.
Zurück zum Zitat Askey, R.: Orthogonal Polynomials and Special Functions. SIAM, Philadelphia (1975)CrossRef Askey, R.: Orthogonal Polynomials and Special Functions. SIAM, Philadelphia (1975)CrossRef
3.
Zurück zum Zitat Beals, R., Wong, R.: Special Functions: A Graduate Text. Cambridge University Press, Cambridge (2010)CrossRef Beals, R., Wong, R.: Special Functions: A Graduate Text. Cambridge University Press, Cambridge (2010)CrossRef
4.
Zurück zum Zitat Boyd, J.P.: The rate of convergence of Hermite function series. Math. Comput. 35, 1309–1316 (1980)CrossRefMATH Boyd, J.P.: The rate of convergence of Hermite function series. Math. Comput. 35, 1309–1316 (1980)CrossRefMATH
5.
Zurück zum Zitat Boyd, J.P.: The optimization of convergence for Chebyshev polynomial methods in an unbounded domain. J. Comput. Phys. 45, 43–79 (1982)CrossRefMATHMathSciNet Boyd, J.P.: The optimization of convergence for Chebyshev polynomial methods in an unbounded domain. J. Comput. Phys. 45, 43–79 (1982)CrossRefMATHMathSciNet
6.
Zurück zum Zitat Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2d edn, p. 665. Dover, Mineola, New York (2001)MATH Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2d edn, p. 665. Dover, Mineola, New York (2001)MATH
7.
Zurück zum Zitat Boyd, J.P.: Trouble with Gegenbauer reconstruction for defeating Gibbs’ phenomenon: Runge phenomenon in the diagonal limit of Gegenbauer polynomial approximations. J. Comput. Phys. 204, 253–264 (2005)CrossRefMATHMathSciNet Boyd, J.P.: Trouble with Gegenbauer reconstruction for defeating Gibbs’ phenomenon: Runge phenomenon in the diagonal limit of Gegenbauer polynomial approximations. J. Comput. Phys. 204, 253–264 (2005)CrossRefMATHMathSciNet
8.
Zurück zum Zitat Boyd, J.P.: Asymptotic Fourier coefficients for a \(c^{\infty }\) bell (Smoothed-“Top-Hat” Function) and the Fourier Extension Problem. J. Sci. Comput. 29, 1–24 (2006)CrossRefMATHMathSciNet Boyd, J.P.: Asymptotic Fourier coefficients for a \(c^{\infty }\) bell (Smoothed-“Top-Hat” Function) and the Fourier Extension Problem. J. Sci. Comput. 29, 1–24 (2006)CrossRefMATHMathSciNet
9.
Zurück zum Zitat Boyd, J.P.: Computing the zeros, maxima and inflection points of Chebyshev, Legendre and Fourier series: solving transcendental equations by spectral interpolation and polynomial rootfinding. J. Eng. Math. 56, 203–219 (2006)CrossRefMATH Boyd, J.P.: Computing the zeros, maxima and inflection points of Chebyshev, Legendre and Fourier series: solving transcendental equations by spectral interpolation and polynomial rootfinding. J. Eng. Math. 56, 203–219 (2006)CrossRefMATH
10.
Zurück zum Zitat Boyd, J.P., Yu, F.: Comparing six spectral methods for interpolation and the Poisson equation in a disk: radial basis functions, Logan-Shepp ridge polynomials, Fourier-Bessel, Fourier-Chebyshev, Zernike polynomials, and double Chebyshev series. J. Comput. Phys. 230, 1408–1438 (2011)CrossRefMATHMathSciNet Boyd, J.P., Yu, F.: Comparing six spectral methods for interpolation and the Poisson equation in a disk: radial basis functions, Logan-Shepp ridge polynomials, Fourier-Bessel, Fourier-Chebyshev, Zernike polynomials, and double Chebyshev series. J. Comput. Phys. 230, 1408–1438 (2011)CrossRefMATHMathSciNet
11.
Zurück zum Zitat Cheney, E.W.: Introduction to Approximation Theory. McGraw-Hill Book Co., New York (1966)MATH Cheney, E.W.: Introduction to Approximation Theory. McGraw-Hill Book Co., New York (1966)MATH
12.
Zurück zum Zitat Dai, G.-M., Mahajan, V.N.: Orthonormal polynomials in wavefront analysis: error analysis. Appl. Opt. 47, 3433–3445 (2008)CrossRef Dai, G.-M., Mahajan, V.N.: Orthonormal polynomials in wavefront analysis: error analysis. Appl. Opt. 47, 3433–3445 (2008)CrossRef
13.
Zurück zum Zitat Elliott, D.: The evaluation and estimation of the coefficients in the Chebyshev series expansion of a function. Math. Comput. 18, 274–284 (1964)CrossRef Elliott, D.: The evaluation and estimation of the coefficients in the Chebyshev series expansion of a function. Math. Comput. 18, 274–284 (1964)CrossRef
14.
Zurück zum Zitat Fox, L., Parker, I.B.: Chebyshev Polynomials in Numerical Analysis, 2nd edn. Oxford University Press, London (1972) Fox, L., Parker, I.B.: Chebyshev Polynomials in Numerical Analysis, 2nd edn. Oxford University Press, London (1972)
15.
Zurück zum Zitat Gasper, G., Rahman, M.: Basic Hypergeometric Series. Cambridge University Press, Cambridge (2004)CrossRefMATH Gasper, G., Rahman, M.: Basic Hypergeometric Series. Cambridge University Press, Cambridge (2004)CrossRefMATH
17.
Zurück zum Zitat Handscomb, D.C.: The relative sizes of the terms in Chebyshev and other ultraspherical expansions. IMA J. Appl. Math. 11, 241–246 (1973)CrossRefMATHMathSciNet Handscomb, D.C.: The relative sizes of the terms in Chebyshev and other ultraspherical expansions. IMA J. Appl. Math. 11, 241–246 (1973)CrossRefMATHMathSciNet
18.
Zurück zum Zitat Jackson, D.: The Theory of Approximation, Vol. 11 of Colloquium Publications (American Mathematical Society). The American Mathematical Society, New York (1930) Jackson, D.: The Theory of Approximation, Vol. 11 of Colloquium Publications (American Mathematical Society). The American Mathematical Society, New York (1930)
19.
Zurück zum Zitat Lanczos, C.: Introduction. In: Tables of Chebyshev polynomials \(s_{n}(x)\) and \(c_{n}(x)\). Applied Mathematics Series, Technical Report 9, 191 pp. United States Government Printing Office, Washington, DC (1952) Lanczos, C.: Introduction. In: Tables of Chebyshev polynomials \(s_{n}(x)\) and \(c_{n}(x)\). Applied Mathematics Series, Technical Report 9, 191 pp. United States Government Printing Office, Washington, DC (1952)
21.
Zurück zum Zitat Livermore, P.W., Jones, C.A., Worland, S.J.: Spectral radial basis functions for full sphere computations. J. Comput. Phys. 227(19), 1209–1224 (2007)CrossRefMATHMathSciNet Livermore, P.W., Jones, C.A., Worland, S.J.: Spectral radial basis functions for full sphere computations. J. Comput. Phys. 227(19), 1209–1224 (2007)CrossRefMATHMathSciNet
22.
Zurück zum Zitat Luke, Y.L.: The Special Functions and Their Approximations, vol. I & II. Academic Press, New York (1969)MATH Luke, Y.L.: The Special Functions and Their Approximations, vol. I & II. Academic Press, New York (1969)MATH
23.
Zurück zum Zitat Luke, Y.L.: Mathematical Functions and Their Approximations, p. 566. Academic Press, New York (1975)MATH Luke, Y.L.: Mathematical Functions and Their Approximations, p. 566. Academic Press, New York (1975)MATH
24.
Zurück zum Zitat Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. Chapman and Hall/CRC Press, Boca Raton, Florida (2003)MATH Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. Chapman and Hall/CRC Press, Boca Raton, Florida (2003)MATH
25.
Zurück zum Zitat Mastroianni, G., Milovanovic, G.V.: Interpolation Processes: Basic Theory and Applications. Springer, New York (2008)CrossRef Mastroianni, G., Milovanovic, G.V.: Interpolation Processes: Basic Theory and Applications. Springer, New York (2008)CrossRef
26.
Zurück zum Zitat Miller, G.F.: On the convergence of Chebyshev series for functions possessing a singularity in the range of representation. SIAM J. Numer. Anal. 3, 390–409 (1966)CrossRefMATHMathSciNet Miller, G.F.: On the convergence of Chebyshev series for functions possessing a singularity in the range of representation. SIAM J. Numer. Anal. 3, 390–409 (1966)CrossRefMATHMathSciNet
27.
Zurück zum Zitat Orszag, S.A.: Fourier series on spheres. Mon. Weather Rev. 102, 56–75 (1974)CrossRef Orszag, S.A.: Fourier series on spheres. Mon. Weather Rev. 102, 56–75 (1974)CrossRef
28.
Zurück zum Zitat Patera, A.T.: A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54, 468–488 (1984)CrossRefMATH Patera, A.T.: A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54, 468–488 (1984)CrossRefMATH
29.
Zurück zum Zitat Petschek, R., Boyd, J.P.: Asymptotics of the coefficients of expansions in Jacobi polynomials. (2013) (to be submitted) Petschek, R., Boyd, J.P.: Asymptotics of the coefficients of expansions in Jacobi polynomials. (2013) (to be submitted)
30.
Zurück zum Zitat Rivlin, T.J.: Chebyshev Polynomials From Approximation Theory to Algebra and Number Theory. Wiley, New York (1990)MATH Rivlin, T.J.: Chebyshev Polynomials From Approximation Theory to Algebra and Number Theory. Wiley, New York (1990)MATH
32.
Zurück zum Zitat Snyder, M.A.: Chebyshev Methods in Numerical Approximation, p. 150. Prentice-Hall, Englewood Cliffs, New Jersey (1966)MATH Snyder, M.A.: Chebyshev Methods in Numerical Approximation, p. 150. Prentice-Hall, Englewood Cliffs, New Jersey (1966)MATH
33.
Zurück zum Zitat Srivastava, H., Manocha, H.: A Treatise on Generating Functions. E. Horwood, New York (1984)MATH Srivastava, H., Manocha, H.: A Treatise on Generating Functions. E. Horwood, New York (1984)MATH
34.
Zurück zum Zitat Szegö, G.: Orthogonal Polynomials, 2d edn. American Mathematical Society, New York (1959)MATH Szegö, G.: Orthogonal Polynomials, 2d edn. American Mathematical Society, New York (1959)MATH
35.
Zurück zum Zitat Tuan, P.D., Elliott, D.: Coefficients in series expansions for certain classes of functions. Math. Comput. 26, 213–232 (1972)CrossRefMATHMathSciNet Tuan, P.D., Elliott, D.: Coefficients in series expansions for certain classes of functions. Math. Comput. 26, 213–232 (1972)CrossRefMATHMathSciNet
36.
Zurück zum Zitat Zernike, F.: Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form der Phasenkontrastmethode. Physica 1, 689–704 (1934)CrossRefMATH Zernike, F.: Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form der Phasenkontrastmethode. Physica 1, 689–704 (1934)CrossRefMATH
Metadaten
Titel
The Relationships Between Chebyshev, Legendre and Jacobi Polynomials: The Generic Superiority of Chebyshev Polynomials and Three Important Exceptions
verfasst von
John P. Boyd
Rolfe Petschek
Publikationsdatum
01.04.2014
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2014
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-013-9751-7

Weitere Artikel der Ausgabe 1/2014

Journal of Scientific Computing 1/2014 Zur Ausgabe

Premium Partner