Skip to main content
Erschienen in: Journal of Science Education and Technology 4/2019

08.03.2019

Methodology and Epistemology of Computer Simulations and Implications for Science Education

verfasst von: Maria Develaki

Erschienen in: Journal of Science Education and Technology | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

While computer simulations are a key element in understanding and doing science today, their nature and implications for science education have not been adequately explored in the relevant literature. In this article, (1) we provide an analysis of the methodology and epistemology of computer simulations, aiming to contribute to a sound and comprehensive account of the nature of computer simulations in science education, and (2) examine certain implications for science education, particularly in terms of contemporary educational goals relating to scientific literacy. We describe methodological elements relating to processes, techniques, and skills required for the construction and evaluation of scientific simulations, and we discuss epistemological views of their reliability and epistemic status based on the relevant philosophical views. We then examine implications of these elements for the use of simulations and especially for supporting scientific practices in the classroom and the corresponding educational goals. Concretely, we compare educational simulations with those used in scientific research and with laboratory experiments, we discuss the question of the reliability of simulations used in teaching or in public information, and we give examples of their use for supporting NOS understanding and reasoning abilities. Finally, in the context of the philosophical discourse about scientific realism, we examine implications of the epistemology of models that concern the conception of the relation between scientific claims and the real world, which constitutes a fundamental epistemological basis for teaching the nature of science.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The research on modelling-based teaching suggests that modelling activities can enhance the acquiring of knowledge, abilities, and epistemologies that reflect real science (e.g. Schwarz & White 2005; Gilbert & Justi 2016) and notes the conditions for the success of model-based teaching, such as the the correct conception of models and modelling (e.g. Justi § Gilbert 2003; Oh & Oh 2011) and the appropriate learning environments, e.g. the use of simulation-based software (e.g. Dorn 1975; Andaloro et al. 1991; Mellar et al. 1994; Develaki 2017).
 
2
The model-based view (in its original version, the semantic view) based its analysis on the central role of models in scientific research and highlighted many aspects of their nature and functions. It followed the statement view predominating at the beginning of the twentieth century, which sees scientific theories as sets of lingustic statements (principles, axioms) that directly descibe the real world (see, e.g. Losee 1990; Giere 1999). The model-based view sees scientific theories not as sets of statements but as sets of models that mediate the application of the theories to complex real-world systems, which means that the theories are absolutely valid only for the models, the simplified versions of the real systems, because the real systems are too complex and the theories too general and abstract for immediate application to them. (Some basic accounts of this view are given, e.g. by Suppe 1977; van Fraasen1980; Cartwright 1983; Morrison and Morgan 1999; Giere 1988, 1999; Knuuttila 2011.)
 
3
Giere (1988, 1999) interpreted this conception for the case of classical mechanics: for example, the fundamental equation F = ma is valid for all the theoretical kinematic models of Newtonian mechanics, but the function of the force is specialized differently in each model, that is, as F = ct, or F = k/r2, or F = − Dx for the models of rectilinear and curvilinear motion and harmonic oscillation respectively. (F is the force, m is the mass, a is the acceleration, r is the radial distance, and k and D are constants).
 
4
The core logic of forward Euler discretization is in general outline also followed, although with mathematically more advanced and complicated discretization schemes, in the solution of the very complex differential equations (which contain derivatives of the variables also with respect to space, i.e. they are partial differential equations) contained in the models of complex states/phenomena, such as turbulent flows in the atmosphere or the astrophysical plasma in solar flares or the progress of a forest fire.
 
5
Scientific computer simulations are essentially written in the mathematical form described in the previous subsection ‘Numerical Solutions of Differential Equations—the Basic Idea and Structure’, which is very productive because the model can thus easily be improved or expanded with further processing. The mathematical form of programming (as in Figs. 1, 2, and 3) is more appropriate for senior high school and college level students. For younger students, graphically oriented computer-based programming software has been developed, which provides a microworld environment and a programming language that is either in text form (the program is then a set of textual orders) or in graphical form (in which case the program is a set of behaviour rules for the objects/items designated to represent the phenomenon or system modeled. For a comparative and research-based study of these programming environments (characteristics, ways of use, possibilities and limitations), see, e.g. in Louca 2004; Luca & Zacharia 2008; Sherrin et al. 1993.
 
6
It has though been argued (e.g. Morrison 2009) that, like traditional experiments on material systems, computer simulations also have materiality, in that during the running of a simulation there is experimentation with a material entity, that is, with a programmed computer (the object of investigation in this case) that undergoes the intervention of the simulation program and falls into different states during the running of the simulation, yielding information about the evolution of the target system. (For more details as regards the explanations, the objections and the arguments relating to this view, see, e.g. Morrison 2009; Norton & Suppe 2001; Hughes 1999; Giere 2009; Winsberg 2010).
 
7
Logical Empiricism interprets deductive reasoning in a formal way, considering that the agreement or non-agreement of the predictions derived from hypotheses and theories with the empirical data leads to the unequivocal acceptance or rejection of the theory. This is a strong scheme in logic and mathematics but is insufficient to interpret in all cases the complexity of judging and choosing the empirical theories of science (see, e.g. Duhem 1978; Lakatos 1974; Kuhn 1989; Giere 2001).
 
8
Such successful applications and predictions, e.g. when they are based on theories about entities of the microscopic world, would then appear as a miracle if the existence of theoretical entities is not accepted: the non-miracles argument (see in Boyd 1983; Devitt 1991).
 
Literatur
Zurück zum Zitat Abd-El-Khalick, F., Bell, R. L., & Lederman, N. G. (1998). The nature of science and instructional practice: making the unnatural natural. Sci Educ, 82(4), 417–437.CrossRef Abd-El-Khalick, F., Bell, R. L., & Lederman, N. G. (1998). The nature of science and instructional practice: making the unnatural natural. Sci Educ, 82(4), 417–437.CrossRef
Zurück zum Zitat Adúriz-Bravo. (2013). A ‘semantic’ view of scientific models for science education. Sci & Educ, 17(2–3), 147–177. Adúriz-Bravo. (2013). A ‘semantic’ view of scientific models for science education. Sci & Educ, 17(2–3), 147–177.
Zurück zum Zitat Adúriz-Bravo, Α., & Izquierdo-Aymerich, Μ. (2009). A research-informed instructional unit to teach the nature of science to pre-service science teachers. Sci & Educ, 18(9), 1177–1192.CrossRef Adúriz-Bravo, Α., & Izquierdo-Aymerich, Μ. (2009). A research-informed instructional unit to teach the nature of science to pre-service science teachers. Sci & Educ, 18(9), 1177–1192.CrossRef
Zurück zum Zitat American Association for the Advancement of Science (AAAS). (1993). Benchmarks for science literacy. New York: Oxford University Press. American Association for the Advancement of Science (AAAS). (1993). Benchmarks for science literacy. New York: Oxford University Press.
Zurück zum Zitat Andaloro, G. V., Donzelli, V., & Sperandeo-Mineo, R. M. (1991). Modelling in physics teaching: the role of computer simulation. Int J Sci Educ, 13(3), 243–254.CrossRef Andaloro, G. V., Donzelli, V., & Sperandeo-Mineo, R. M. (1991). Modelling in physics teaching: the role of computer simulation. Int J Sci Educ, 13(3), 243–254.CrossRef
Zurück zum Zitat Annetta, L. (2012). The books: learning science through video games and simulations. Sci Educ, 96(3), 566–568.CrossRef Annetta, L. (2012). The books: learning science through video games and simulations. Sci Educ, 96(3), 566–568.CrossRef
Zurück zum Zitat Barab, S., & Dede, C. (2007). Games and immersive participatory simulations for science education: an emerging type of curricula. J Sci Educ Technol, 16(1), 1–3.CrossRef Barab, S., & Dede, C. (2007). Games and immersive participatory simulations for science education: an emerging type of curricula. J Sci Educ Technol, 16(1), 1–3.CrossRef
Zurück zum Zitat Boyd, R. Ν. (1983). On the current status of the issue of scientific realism. Erkenntnis, 19, 45–90.CrossRef Boyd, R. Ν. (1983). On the current status of the issue of scientific realism. Erkenntnis, 19, 45–90.CrossRef
Zurück zum Zitat Boyd, R. N. (1992). Constructivism, realism, and the philosophical method. In: J Earman (ed), Interference, explanation, and other frustrations (p.p. 131–198), Essays in the Philosophy of Science, University of California Press, Berkley. Boyd, R. N. (1992). Constructivism, realism, and the philosophical method. In: J Earman (ed), Interference, explanation, and other frustrations (p.p. 131–198), Essays in the Philosophy of Science, University of California Press, Berkley.
Zurück zum Zitat Bunge, M. (1970). Philosophy of physics, Dordrecht (Holland). Comp: Reidel Publ. Bunge, M. (1970). Philosophy of physics, Dordrecht (Holland). Comp: Reidel Publ.
Zurück zum Zitat Burian, R.M. (1980). Empirismus. In: J. Speck (ed.), Handbuch wissenschaftstheoretischer Begriffe, Band 1. Göttingen. Burian, R.M. (1980). Empirismus. In: J. Speck (ed.), Handbuch wissenschaftstheoretischer Begriffe, Band 1. Göttingen.
Zurück zum Zitat Bybee, R. (1997). Achieving scientific literacy: from purposes to practices. Portsmouth: Heilmann. Bybee, R. (1997). Achieving scientific literacy: from purposes to practices. Portsmouth: Heilmann.
Zurück zum Zitat Cartwright, N. (1983). How the laws of physics lie. Oxford: Oxford University Press.CrossRef Cartwright, N. (1983). How the laws of physics lie. Oxford: Oxford University Press.CrossRef
Zurück zum Zitat Clement, J. J., & Ramirez, M. A. (Eds.). (2008). Model based learning and instruction in science. Dortrecht. Springer. Clement, J. J., & Ramirez, M. A. (Eds.). (2008). Model based learning and instruction in science. Dortrecht. Springer.
Zurück zum Zitat Clough, M. P., & Olson, J. K. (2008). Teaching and assessing the nature of science. Science & Education (special issue), 17(2–3), 143–114. Clough, M. P., & Olson, J. K. (2008). Teaching and assessing the nature of science. Science & Education (special issue), 17(2–3), 143–114.
Zurück zum Zitat de Jong, T. (2006). Technological advances in inquiry learning. Science, 312(5773), 532–533.CrossRef de Jong, T. (2006). Technological advances in inquiry learning. Science, 312(5773), 532–533.CrossRef
Zurück zum Zitat de Jong, T., & van Joolingen, W. R. (1998). Scientific discovery learning with computer simulations of conceptual domains. Rev Educ Res, 68(2), 179–202.CrossRef de Jong, T., & van Joolingen, W. R. (1998). Scientific discovery learning with computer simulations of conceptual domains. Rev Educ Res, 68(2), 179–202.CrossRef
Zurück zum Zitat de Jong, T., Linn, M. C., & Zacharia, C. Z. (2013). Physical and virtual laboratories in science and engineering education. Science, 340, 305–308. de Jong, T., Linn, M. C., & Zacharia, C. Z. (2013). Physical and virtual laboratories in science and engineering education. Science, 340, 305–308.
Zurück zum Zitat Develaki, M. (2007). The model-based view of scientific theories and the structuring of school science programmes. Science & Education, 16(7), 725–749. Develaki, M. (2007). The model-based view of scientific theories and the structuring of school science programmes. Science & Education, 16(7), 725–749.
Zurück zum Zitat Develaki, M. (2012). Integrating scientific methods and knowledge into the teaching of Newton’s theory of gravitation: an instructional sequence for teachers’ and students’ nature of science education. Science & Education, 21, 853–879. Develaki, M. (2012). Integrating scientific methods and knowledge into the teaching of Newton’s theory of gravitation: an instructional sequence for teachers’ and students’ nature of science education. Science & Education, 21, 853–879.
Zurück zum Zitat Develaki, M. (2016). Key aspects of scientific modeling exemplified by school science models: some units for teaching contextualized scientific methodology. Interchange, 47(3), 297–327. Develaki, M. (2016). Key aspects of scientific modeling exemplified by school science models: some units for teaching contextualized scientific methodology. Interchange, 47(3), 297–327.
Zurück zum Zitat Develaki, M. (2017). Using computer simulations for promoting model-based reasoning. Epistemological and educational dimensions. Science & Education, 26, 1001–10027. Develaki, M. (2017). Using computer simulations for promoting model-based reasoning. Epistemological and educational dimensions. Science & Education, 26, 1001–10027.
Zurück zum Zitat Devitt, M. (1991). Realism and truth (2nd ed.). Oxford (UK) & Cambridge (USA): Blackwell. Devitt, M. (1991). Realism and truth (2nd ed.). Oxford (UK) & Cambridge (USA): Blackwell.
Zurück zum Zitat Dorn, W. S. (1975). Simulations versus models: which one and when. J Res Sci Teach, 12(4), 371–377.CrossRef Dorn, W. S. (1975). Simulations versus models: which one and when. J Res Sci Teach, 12(4), 371–377.CrossRef
Zurück zum Zitat Dowling, D. (1999). Experimenting on theories. Sci Context, 12(2), 261–273.CrossRef Dowling, D. (1999). Experimenting on theories. Sci Context, 12(2), 261–273.CrossRef
Zurück zum Zitat Duhem, P. (1978). Ziel and Struktur der physicalischen Theorien. Hamburg: Meiner. Duhem, P. (1978). Ziel and Struktur der physicalischen Theorien. Hamburg: Meiner.
Zurück zum Zitat Galison, P. (1997). Image and logic: a material culture of microphysics. Chicago: University of Chicago Press. Galison, P. (1997). Image and logic: a material culture of microphysics. Chicago: University of Chicago Press.
Zurück zum Zitat Giere, R. (2009). Is computer simulation changing the face of experimentation? Philosophical Studies, 143(1), 59–62.CrossRef Giere, R. (2009). Is computer simulation changing the face of experimentation? Philosophical Studies, 143(1), 59–62.CrossRef
Zurück zum Zitat Giere, R. N. (2006). Scientific perspectivism. Chicago: The University of Chicago Press.CrossRef Giere, R. N. (2006). Scientific perspectivism. Chicago: The University of Chicago Press.CrossRef
Zurück zum Zitat Giere, R. N. (2001). A new framework for teaching scientific reasoning. Argumentation, 15(1), 21–33.CrossRef Giere, R. N. (2001). A new framework for teaching scientific reasoning. Argumentation, 15(1), 21–33.CrossRef
Zurück zum Zitat Giere, R. N. (1999). Science without laws. Chicago & London: University of Chicago Press. Giere, R. N. (1999). Science without laws. Chicago & London: University of Chicago Press.
Zurück zum Zitat Giere, R. N. (1988). Explaining science: a cognitive approach. Chicago: University of Chicago Press. Giere, R. N. (1988). Explaining science: a cognitive approach. Chicago: University of Chicago Press.
Zurück zum Zitat Gilbert, J. K., & Justi, R. (2016). Modelling-based teaching in science education. Switzerland: Springer International Publishing. Gilbert, J. K., & Justi, R. (2016). Modelling-based teaching in science education. Switzerland: Springer International Publishing.
Zurück zum Zitat Gobert, J., O’Dwyer, L., Horwitz, P., Buckley, B., Levy, S. T., & Wilensky, U. (2011). Examining the relationship between students’ epistemologies of models and conceptual learning in three science domains: biology, physics, & chemistry. International Journal of Science Education, 33(5), 653–684.CrossRef Gobert, J., O’Dwyer, L., Horwitz, P., Buckley, B., Levy, S. T., & Wilensky, U. (2011). Examining the relationship between students’ epistemologies of models and conceptual learning in three science domains: biology, physics, & chemistry. International Journal of Science Education, 33(5), 653–684.CrossRef
Zurück zum Zitat Gramelsberger, G. (2010). Computerexperimente. Zum Wandel der Wissenschaft im Zeitalter des Computers. Bielefeld: Transcript Verlag.CrossRef Gramelsberger, G. (2010). Computerexperimente. Zum Wandel der Wissenschaft im Zeitalter des Computers. Bielefeld: Transcript Verlag.CrossRef
Zurück zum Zitat Grandy, R. E. (1992). Theories of theories, a view from cognitive science. In J. Earman (Ed.), Inference, explanation, and other frustrations. Essays in the philosophy of science (pp. 216–233). Berkeley: University of California Press. Grandy, R. E. (1992). Theories of theories, a view from cognitive science. In J. Earman (Ed.), Inference, explanation, and other frustrations. Essays in the philosophy of science (pp. 216–233). Berkeley: University of California Press.
Zurück zum Zitat Greca, I. M., Seoane, E., & Arriazzecq, I. (2014). Epistemological issues concerning computer simulations in science and their implications for science education. Sci & Educ, 23(4), 897–921.CrossRef Greca, I. M., Seoane, E., & Arriazzecq, I. (2014). Epistemological issues concerning computer simulations in science and their implications for science education. Sci & Educ, 23(4), 897–921.CrossRef
Zurück zum Zitat Guala, F. (2002). Models, simulations, and experiments. In L. Magnani & N. Nersessian (Eds.), Model-based reasoning: science, technologies, value (pp. 59–74). New York: Kluwer.CrossRef Guala, F. (2002). Models, simulations, and experiments. In L. Magnani & N. Nersessian (Eds.), Model-based reasoning: science, technologies, value (pp. 59–74). New York: Kluwer.CrossRef
Zurück zum Zitat Halloun, I. A. (2004). Modelling theory in science education. Dordrecht: Kluwer Academic Publishers. Halloun, I. A. (2004). Modelling theory in science education. Dordrecht: Kluwer Academic Publishers.
Zurück zum Zitat Hodson, D. (2014). Nature of science in the science curriculum: origin, development, implications and shifting emphases. In M. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 911–970). Dordrecht: Springer. Hodson, D. (2014). Nature of science in the science curriculum: origin, development, implications and shifting emphases. In M. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 911–970). Dordrecht: Springer.
Zurück zum Zitat Hmelo, C., & Day, R. (1999). Contextualized questioning to scaffold learning from simulations. Computer & Education, 33, 151–164.CrossRef Hmelo, C., & Day, R. (1999). Contextualized questioning to scaffold learning from simulations. Computer & Education, 33, 151–164.CrossRef
Zurück zum Zitat Hughes, R. I. G. (1999). The Ising model, computer simulation, and universal physics. In M. S. Morgan & M. Morrison (Eds.), Models as mediators (pp. 97–145). Cambridge: Cambridge University Press. Hughes, R. I. G. (1999). The Ising model, computer simulation, and universal physics. In M. S. Morgan & M. Morrison (Eds.), Models as mediators (pp. 97–145). Cambridge: Cambridge University Press.
Zurück zum Zitat Humphreys, P. (2004). Extending ourselves: computational science, empiricism, and scientific method. New York: Oxford University Press.CrossRef Humphreys, P. (2004). Extending ourselves: computational science, empiricism, and scientific method. New York: Oxford University Press.CrossRef
Zurück zum Zitat Irzik, G., & Nola, R. (2011). A family resemblance approach to the nature of science for science education. Sci & Educ, 20(7–8), 591–607.CrossRef Irzik, G., & Nola, R. (2011). A family resemblance approach to the nature of science for science education. Sci & Educ, 20(7–8), 591–607.CrossRef
Zurück zum Zitat Jimoyiannis, A. (2010). Designing and implementing an integrated technological pedagogical science knowledge framework for science teacher’s professional development. Comput Educ, 55(3), 1259–1269.CrossRef Jimoyiannis, A. (2010). Designing and implementing an integrated technological pedagogical science knowledge framework for science teacher’s professional development. Comput Educ, 55(3), 1259–1269.CrossRef
Zurück zum Zitat Justi, R. S., & Gilbert, J. K. (2003). Teachers’ views on the nature of models. Int J Sci Educ, 25(11), 1369–1386.CrossRef Justi, R. S., & Gilbert, J. K. (2003). Teachers’ views on the nature of models. Int J Sci Educ, 25(11), 1369–1386.CrossRef
Zurück zum Zitat Khishfe, R., & Abd-El-Khalick, F. (2002). Influence of explicit and reflective versus implicit inquiry-oriented instruction on sixth graders’ views of nature of science. Journal of Research in Science Teaching, 39(7), 551–578.CrossRef Khishfe, R., & Abd-El-Khalick, F. (2002). Influence of explicit and reflective versus implicit inquiry-oriented instruction on sixth graders’ views of nature of science. Journal of Research in Science Teaching, 39(7), 551–578.CrossRef
Zurück zum Zitat Knuuttila, T. (2011). Modelling and representing: an artefactual approach to model-based representation. Studies in History and Philosophy of Science Part A, 42(2), 262–271.CrossRef Knuuttila, T. (2011). Modelling and representing: an artefactual approach to model-based representation. Studies in History and Philosophy of Science Part A, 42(2), 262–271.CrossRef
Zurück zum Zitat Knuuttila, T., & Loettgers, A. (2013). Synthetic modeling and the mechanistic account: material recombination and beyond. Philos Sci, 80(5), 874–885.CrossRef Knuuttila, T., & Loettgers, A. (2013). Synthetic modeling and the mechanistic account: material recombination and beyond. Philos Sci, 80(5), 874–885.CrossRef
Zurück zum Zitat Koponen, I. T. (2007). Models and modelling in physics education: a critical re-analysis of philosophical underpinnings and suggestions for revisions. Sci & Educ, 16(7-8), 751–773.CrossRef Koponen, I. T. (2007). Models and modelling in physics education: a critical re-analysis of philosophical underpinnings and suggestions for revisions. Sci & Educ, 16(7-8), 751–773.CrossRef
Zurück zum Zitat Kuhn, T. S. (1989). Die Struktur wissenschaftlicher Revolutionen. Suhrkamp-Taschenbuch, Frankfurt am Main (10. Aufl.). Kuhn, T. S. (1989). Die Struktur wissenschaftlicher Revolutionen. Suhrkamp-Taschenbuch, Frankfurt am Main (10. Aufl.).
Zurück zum Zitat Lakatos, Ι. (1974). Falsifikation und die Methodologie wissenschaftlicher Forschungsprogramme. In I. Lakatos and Musgrave, A. (Eds.), Kritik und Erkenntnisfortschritt (pp. 89–189). Vieweg, Braunschweig. Lakatos, Ι. (1974). Falsifikation und die Methodologie wissenschaftlicher Forschungsprogramme. In I. Lakatos and Musgrave, A. (Eds.), Kritik und Erkenntnisfortschritt (pp. 89–189). Vieweg, Braunschweig.
Zurück zum Zitat Lederman, N. G. (2006). Syntax of nature of science within inquiry and science instruction. In L. B. Flick & N. G. Lederman (Eds.), Scientific inquiry and nature of science (pp. 301–317). Dordrecht, The Netherlands: Springer. Lederman, N. G. (2006). Syntax of nature of science within inquiry and science instruction. In L. B. Flick & N. G. Lederman (Eds.), Scientific inquiry and nature of science (pp. 301–317). Dordrecht, The Netherlands: Springer.
Zurück zum Zitat Lehnard, J. (2007). Computer simulation: the cooperation between experimenting and modeling. Philosophy of Science., 74(2), 176–194.CrossRef Lehnard, J. (2007). Computer simulation: the cooperation between experimenting and modeling. Philosophy of Science., 74(2), 176–194.CrossRef
Zurück zum Zitat Lehnard, J. (2006). Surprised by a nanowire: simulation, control, and understanding. Philosophy of Science., 73(5), 605–616.CrossRef Lehnard, J. (2006). Surprised by a nanowire: simulation, control, and understanding. Philosophy of Science., 73(5), 605–616.CrossRef
Zurück zum Zitat Linn, M. C. (2003). Technology and science education: starting points, research programs, and trends. International Journal of Science Education, 25(6), 727–758.CrossRef Linn, M. C. (2003). Technology and science education: starting points, research programs, and trends. International Journal of Science Education, 25(6), 727–758.CrossRef
Zurück zum Zitat Losee, J. (1990). A historical introduction to the philosophy of science. Oxford: University Press. Losee, J. (1990). A historical introduction to the philosophy of science. Oxford: University Press.
Zurück zum Zitat Louca, L. (2004). Case studies of fifth-grade student modeling in science through programming: comparison of modeling practices and conversations. In Unpublished doctoral dissertation. MD: University of Maryland, College Park. Louca, L. (2004). Case studies of fifth-grade student modeling in science through programming: comparison of modeling practices and conversations. In Unpublished doctoral dissertation. MD: University of Maryland, College Park.
Zurück zum Zitat Luca, L. T., & Zacharia, Z. C. (2008). The use of computer-based programming environments as computer modelling tools in early science education: the cases of textual and graphical program languages. International Journal of Science Education, 30(3), 287–323.CrossRef Luca, L. T., & Zacharia, Z. C. (2008). The use of computer-based programming environments as computer modelling tools in early science education: the cases of textual and graphical program languages. International Journal of Science Education, 30(3), 287–323.CrossRef
Zurück zum Zitat Lunetta, V. N., & Hofstein, A. (1981). Simulations in science education. Science Education, 65(3), 243–252.CrossRef Lunetta, V. N., & Hofstein, A. (1981). Simulations in science education. Science Education, 65(3), 243–252.CrossRef
Zurück zum Zitat Matthews, M. R. (2012). Changing the focus: from nature of science to features of science. In M. S. Khine (Ed.), Advances in nature of science research (pp. 3–26). Dordrecht, The Netherlands: Springer.CrossRef Matthews, M. R. (2012). Changing the focus: from nature of science to features of science. In M. S. Khine (Ed.), Advances in nature of science research (pp. 3–26). Dordrecht, The Netherlands: Springer.CrossRef
Zurück zum Zitat Matthews, M. R. (1994). Science teaching. New York: Routledge. Matthews, M. R. (1994). Science teaching. New York: Routledge.
Zurück zum Zitat McComas, W. F. (2008). Seeking historical examples to illustrate key aspects of the nature of science. Science & Education, 17(2–3), 249–263.CrossRef McComas, W. F. (2008). Seeking historical examples to illustrate key aspects of the nature of science. Science & Education, 17(2–3), 249–263.CrossRef
Zurück zum Zitat Mellar, H., Bliss, J., Boohan, R., Ogborn, J. & Tompsett, C. (Eds) (1994). Learning with artificial worlds: computer-based modelling in the curriculum. London: the Falmer Press. Mellar, H., Bliss, J., Boohan, R., Ogborn, J. & Tompsett, C. (Eds) (1994). Learning with artificial worlds: computer-based modelling in the curriculum. London: the Falmer Press.
Zurück zum Zitat Morrison, M. S., & Morgan, M. (1999). Introduction. In M. S. Morgan & M. Morrison (Eds.), Models as mediators (pp. 1–9). Cambridge University Press. Morrison, M. S., & Morgan, M. (1999). Introduction. In M. S. Morgan & M. Morrison (Eds.), Models as mediators (pp. 1–9). Cambridge University Press.
Zurück zum Zitat Morgan, M. (2003). Experiments without material intervention: model experiments, virtual experiments and virtually experiments. In H. Radder (Ed.), The philosophy of scientific experimentation (pp. 216–235). Pittsburg, PA: University of Pittsburgh Press. Morgan, M. (2003). Experiments without material intervention: model experiments, virtual experiments and virtually experiments. In H. Radder (Ed.), The philosophy of scientific experimentation (pp. 216–235). Pittsburg, PA: University of Pittsburgh Press.
Zurück zum Zitat Morgan, M. S. (1998). Learning from models. In M. S. Morgan & M. Morrison (Eds.), Models as mediators (pp. 326–346). Cambridge University Press. Morgan, M. S. (1998). Learning from models. In M. S. Morgan & M. Morrison (Eds.), Models as mediators (pp. 326–346). Cambridge University Press.
Zurück zum Zitat Morrison, M. (2009). Models, measurement and computer simulation: the changing face of experimentation. Philosophical Studies, 143, 33–57.CrossRef Morrison, M. (2009). Models, measurement and computer simulation: the changing face of experimentation. Philosophical Studies, 143, 33–57.CrossRef
Zurück zum Zitat National Research Council (NRC). (1996). National Science Education Standards. Washington, DC: National academy Press. National Research Council (NRC). (1996). National Science Education Standards. Washington, DC: National academy Press.
Zurück zum Zitat NGSS Lead States. (2013). Next Generation Science Standards: for states, by states. Washington: The National Academies Press. NGSS Lead States. (2013). Next Generation Science Standards: for states, by states. Washington: The National Academies Press.
Zurück zum Zitat Norton, S., & Suppe, F. (2001). Why atmospheric modeling is good science. In C. Miller & P. Edwards (Eds.), Changing the atmosphere: expert knowledge and environmental governance (pp. 88–133). Cambridge, MA: MIT Press. Norton, S., & Suppe, F. (2001). Why atmospheric modeling is good science. In C. Miller & P. Edwards (Eds.), Changing the atmosphere: expert knowledge and environmental governance (pp. 88–133). Cambridge, MA: MIT Press.
Zurück zum Zitat Oh, P. S., & Oh, S. J. (2011). What teachers of science need to know about models. International Journal of Science Education, 33, 1109–1130.CrossRef Oh, P. S., & Oh, S. J. (2011). What teachers of science need to know about models. International Journal of Science Education, 33, 1109–1130.CrossRef
Zurück zum Zitat Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What ‘ideas-about-science’ should be taught in school science? A Delphi Study of the Expert Community. Journal of Research in Science Teaching, 40(7), 692–720.CrossRef Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What ‘ideas-about-science’ should be taught in school science? A Delphi Study of the Expert Community. Journal of Research in Science Teaching, 40(7), 692–720.CrossRef
Zurück zum Zitat Parker, W. (2009). Does matter really matter? Computer simulations, experiments, and materiality. Synthese, 169, 483–496.CrossRef Parker, W. (2009). Does matter really matter? Computer simulations, experiments, and materiality. Synthese, 169, 483–496.CrossRef
Zurück zum Zitat Popper, K. R. (1959). The logic of scientific discovery. London: Hutchinson. Popper, K. R. (1959). The logic of scientific discovery. London: Hutchinson.
Zurück zum Zitat Roth, W.-M. R, Woszczyna, C., & and Smith, G. (1996). Affordances and constraints of computers in science education. Journal of Research in Science Teaching, 33, 995–1017. Roth, W.-M. R, Woszczyna, C., & and Smith, G. (1996). Affordances and constraints of computers in science education. Journal of Research in Science Teaching, 33, 995–1017.
Zurück zum Zitat Rutten, N., van Joolingen, W. R., & van der Veen, J. T. (2012). The learning effects of computer simulations in science education. Computers & Education, 58, 136–153.CrossRef Rutten, N., van Joolingen, W. R., & van der Veen, J. T. (2012). The learning effects of computer simulations in science education. Computers & Education, 58, 136–153.CrossRef
Zurück zum Zitat Scalise, K., Timms, M., Moorjani, A., Clark, L., Holtermann, K., & Irvin, P. S. (2011). Student learning in science simulations: design features that promote learning gains. Journal of Research in Science Teaching, 48(9), 1050–1078.CrossRef Scalise, K., Timms, M., Moorjani, A., Clark, L., Holtermann, K., & Irvin, P. S. (2011). Student learning in science simulations: design features that promote learning gains. Journal of Research in Science Teaching, 48(9), 1050–1078.CrossRef
Zurück zum Zitat Schwarz, C. V., & White, B. Y. (2005). Meta-modeling knowledge: developing students’ understanding of scientific modeling. Cognition and Instruction, 23(2), 165–205.CrossRef Schwarz, C. V., & White, B. Y. (2005). Meta-modeling knowledge: developing students’ understanding of scientific modeling. Cognition and Instruction, 23(2), 165–205.CrossRef
Zurück zum Zitat Sherrin, B., diSessa, A., & Hammer. (1993). Dynaturtle revised: learning physic through collaborative design of a computer model. Interactive Learning Environments, 3(2), 91–118.CrossRef Sherrin, B., diSessa, A., & Hammer. (1993). Dynaturtle revised: learning physic through collaborative design of a computer model. Interactive Learning Environments, 3(2), 91–118.CrossRef
Zurück zum Zitat Smetana, L. K., & Bell, R. L. (2012). Computer simulations to support science instruction and learning: a critical review of the literature. International Journal of Science Education, 34(9), 1337–1370.CrossRef Smetana, L. K., & Bell, R. L. (2012). Computer simulations to support science instruction and learning: a critical review of the literature. International Journal of Science Education, 34(9), 1337–1370.CrossRef
Zurück zum Zitat Stöckler, M. (1995). Theoretische Modelle im Lichte der Wissenschafttheorie. Praxis der Naturwissenschaften—Physik, 1, 16–22. Stöckler, M. (1995). Theoretische Modelle im Lichte der Wissenschafttheorie. Praxis der Naturwissenschaften—Physik, 1, 16–22.
Zurück zum Zitat Suppe, F. (1977). The structure of scientific theories (2nd ed.). Chicago: University of Illinois Press. Suppe, F. (1977). The structure of scientific theories (2nd ed.). Chicago: University of Illinois Press.
Zurück zum Zitat Suppes, P. (1997). Perception, models, and data: some comments. Behavior Research Methods, Instruments, & Computers., 29(1), 109–112.CrossRef Suppes, P. (1997). Perception, models, and data: some comments. Behavior Research Methods, Instruments, & Computers., 29(1), 109–112.CrossRef
Zurück zum Zitat Tala, S. (2013). Knowledge building expertise: nanomodellers’ education as an example. Science & Education, 20, 1323–1346.CrossRef Tala, S. (2013). Knowledge building expertise: nanomodellers’ education as an example. Science & Education, 20, 1323–1346.CrossRef
Zurück zum Zitat Tala, S. (2011). Enculturation into technoscience: analysis of the views of novices and experts on modelling and learning in nanophysics. Science & Education, 20, 733–760.CrossRef Tala, S. (2011). Enculturation into technoscience: analysis of the views of novices and experts on modelling and learning in nanophysics. Science & Education, 20, 733–760.CrossRef
Zurück zum Zitat Tala, S., & Vesterinen, V. Μ. (2015). Nature of science contextualized: studying nature of science with scientists. Science & Education, 24, 435–457.CrossRef Tala, S., & Vesterinen, V. Μ. (2015). Nature of science contextualized: studying nature of science with scientists. Science & Education, 24, 435–457.CrossRef
Zurück zum Zitat van Fraasen, B. C. (1980). The scientific image. Oxford University Press. van Fraasen, B. C. (1980). The scientific image. Oxford University Press.
Zurück zum Zitat Webb, M. E. (2005). Affordances of ICT in science learning: implications for an integrated pedagogy. International Journal of Science Education, 27(6), 705–735.CrossRef Webb, M. E. (2005). Affordances of ICT in science learning: implications for an integrated pedagogy. International Journal of Science Education, 27(6), 705–735.CrossRef
Zurück zum Zitat Winsberg, E. B. (2010). Science in the age of computer simulation. The University of Chicago Press, Chicago and London. Winsberg, E. B. (2010). Science in the age of computer simulation. The University of Chicago Press, Chicago and London.
Zurück zum Zitat Wong, S. L., & Hodson, D. (2009). From the horse’s mouth: what scientists say about scientific investigation and scientific knowledge. Science Education, 93, 109–130.CrossRef Wong, S. L., & Hodson, D. (2009). From the horse’s mouth: what scientists say about scientific investigation and scientific knowledge. Science Education, 93, 109–130.CrossRef
Zurück zum Zitat Wu, H.-K. (2010). Modeling a complex system: using novice-expert analysis for developing an effective technology-enhanced learning environment. International Journal of Science Education, 32(2), 195–219.CrossRef Wu, H.-K. (2010). Modeling a complex system: using novice-expert analysis for developing an effective technology-enhanced learning environment. International Journal of Science Education, 32(2), 195–219.CrossRef
Zurück zum Zitat Zacharia, Z. C. (2005). The impact of interactive computer simulations on the nature and quality of postgraduate science teachers’ explanations in physics. International Journal of Science Education, 27(14), 1741–1767.CrossRef Zacharia, Z. C. (2005). The impact of interactive computer simulations on the nature and quality of postgraduate science teachers’ explanations in physics. International Journal of Science Education, 27(14), 1741–1767.CrossRef
Zurück zum Zitat Zacharia, Z. C. (2007). Comparing and combining real and virtual experimentation: an effort to enhance students’ conceptual understanding of electric circuits. Journal of Computer Assisted Learning, 232(2), 120–132.CrossRef Zacharia, Z. C. (2007). Comparing and combining real and virtual experimentation: an effort to enhance students’ conceptual understanding of electric circuits. Journal of Computer Assisted Learning, 232(2), 120–132.CrossRef
Zurück zum Zitat Zacharia, Z. C., Olympiou, G., & Papaevripidou, M. (2008). Effects of experimenting with physical and virtual manipulatives on students’ conceptual understanding in heat and temperature. Journal of Research in Science Teaching, 45(9), 1021–1035.CrossRef Zacharia, Z. C., Olympiou, G., & Papaevripidou, M. (2008). Effects of experimenting with physical and virtual manipulatives on students’ conceptual understanding in heat and temperature. Journal of Research in Science Teaching, 45(9), 1021–1035.CrossRef
Zurück zum Zitat Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: a research-based framework for socioscientific issues education. Science Education, 89(3), 357–377.CrossRef Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: a research-based framework for socioscientific issues education. Science Education, 89(3), 357–377.CrossRef
Metadaten
Titel
Methodology and Epistemology of Computer Simulations and Implications for Science Education
verfasst von
Maria Develaki
Publikationsdatum
08.03.2019
Verlag
Springer Netherlands
Erschienen in
Journal of Science Education and Technology / Ausgabe 4/2019
Print ISSN: 1059-0145
Elektronische ISSN: 1573-1839
DOI
https://doi.org/10.1007/s10956-019-09772-0

Weitere Artikel der Ausgabe 4/2019

Journal of Science Education and Technology 4/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.