Skip to main content
Erschienen in: Journal of Polymer Research 10/2016

01.10.2016 | ORIGINAL PAPER

Enhanced crystallization behaviour and impact toughness of poly(ethylene terephthalate) with a phenyl phosphonic acid salts compound

verfasst von: Zhiyuan Shen, Faliang Luo, Xiaomei Lei, Lijie Ji, Kezhi Wang

Erschienen in: Journal of Polymer Research | Ausgabe 10/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Low crystallization rate and inherent brittleness characteristics limit the wide application of PET. In this paper, it was found that a low molecular weight Phenyl phosphonic acid salts compound (TMC-210) is a very effective nucleator and can enhance the impact strength very much. So, the effect of TMC-210 on the crystallization behaviour and mechanical properties of poly(ethylene terephthalate) were systematically evaluated by differential scanning calorimetry (DSC), polarized optical microscopy (POM), wide angle X-ray diffraction (WAXD), scanning electron microscope (SEM) and mechanical properties test. The results show that TMC-210 obviously improves the crystallization temperature and accelerates the crystallization rate of PET and reflects a significant heterogeneous nucleating effect with a nucleation efficiency of 99.8 % when introducing a low content of 0.6 wt% TMC-210. The spherulites size and number of blended PET are greater than pure PET. The crystal structure of PET does not change but the blends with high TMC-210 content appears new diffraction peaks in x-ray diffraction spectrogram and it may attribute to the agglomeration of TMC-210 particles, which is verified by SEM observation. The impact fracture surface of PET develops a brittle ductile transition and thus the impact strength of PET improves significantly. Additionally, Lauritzen–Hoffman equation was used to discuss the effect of TMC-210 on the fold surface free energy (σ e) of PET in the crystallization process and found that the σ e values of PET/TMC-210 blends is smaller than that of pure PET.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Haubruge HG, Jonas AM, Legras R (2004) Morphological study of melt-crystallized poly(ethylene terephthalate). A. Comparison of transmission electron microscopy and small-angle X-ray scattering of bulk samples. Macromolecules 37(1):126–134CrossRef Haubruge HG, Jonas AM, Legras R (2004) Morphological study of melt-crystallized poly(ethylene terephthalate). A. Comparison of transmission electron microscopy and small-angle X-ray scattering of bulk samples. Macromolecules 37(1):126–134CrossRef
2.
Zurück zum Zitat Durmus A, Ercan N, Soyubol G, Deligöz H, Kaşgöz A (2009) Nonisothermal crystallization kinetics of poly(ethylene terephthalate)/clay nanocomposites prepared by melt processing. Polym Compos:1056–1066 Durmus A, Ercan N, Soyubol G, Deligöz H, Kaşgöz A (2009) Nonisothermal crystallization kinetics of poly(ethylene terephthalate)/clay nanocomposites prepared by melt processing. Polym Compos:1056–1066
3.
Zurück zum Zitat Tang S, Xin Z (2009) Structural effects of ionomers on the morphology, isothermal crystallization kinetics and melting behaviors of PET/ionomers. Polymer 50(4):1054–1061CrossRef Tang S, Xin Z (2009) Structural effects of ionomers on the morphology, isothermal crystallization kinetics and melting behaviors of PET/ionomers. Polymer 50(4):1054–1061CrossRef
4.
Zurück zum Zitat Wang Q, Keffer DJ, Petrovan S, Thomas JB (2010) Molecular dynamics simulation of poly(ethylene terephthalate) oligomers. J Phys Chem B 114(2):786–795CrossRef Wang Q, Keffer DJ, Petrovan S, Thomas JB (2010) Molecular dynamics simulation of poly(ethylene terephthalate) oligomers. J Phys Chem B 114(2):786–795CrossRef
5.
Zurück zum Zitat Tao Y, Mai K (2007) Non-isothermal crystallization and melting behavior of compatibilized polypropylene/recycled poly(ethylene terephthalate) blends. Eur Polym J 43(8):3538–3549CrossRef Tao Y, Mai K (2007) Non-isothermal crystallization and melting behavior of compatibilized polypropylene/recycled poly(ethylene terephthalate) blends. Eur Polym J 43(8):3538–3549CrossRef
6.
Zurück zum Zitat Chen H, Pyda M, Cebe P (2009) Non-isothermal crystallization of PET/PLA blends. Thermochim Acta 492(1–2):61–66CrossRef Chen H, Pyda M, Cebe P (2009) Non-isothermal crystallization of PET/PLA blends. Thermochim Acta 492(1–2):61–66CrossRef
7.
Zurück zum Zitat Antoniadis G, Paraskevopoulos KM, Vassiliou AA, Papageorgiou GZ, Bikiaris D, Chrissafis K (2011) Nonisothermal melt-crystallization kinetics for in situ prepared poly(ethylene terephthalate)/monmorilonite (PET/OMMT). Thermochim Acta 521(1–2):161–169CrossRef Antoniadis G, Paraskevopoulos KM, Vassiliou AA, Papageorgiou GZ, Bikiaris D, Chrissafis K (2011) Nonisothermal melt-crystallization kinetics for in situ prepared poly(ethylene terephthalate)/monmorilonite (PET/OMMT). Thermochim Acta 521(1–2):161–169CrossRef
8.
Zurück zum Zitat Calcagno CIW, Mariani CM, Teixeira SR, Mauler RS (2007) The effect of organic modifier of the clay on morphology and crystallization properties of PET nanocomposites. Polymer 48(4):966–974CrossRef Calcagno CIW, Mariani CM, Teixeira SR, Mauler RS (2007) The effect of organic modifier of the clay on morphology and crystallization properties of PET nanocomposites. Polymer 48(4):966–974CrossRef
9.
Zurück zum Zitat Pan P, Liang Z, Cao A, Inoue Y (2009) Layered metal phosphonate reinforced poly (L-lactide) Composites with a highly enhanced crystallization rate. ACS Appl Mater Interfaces 1(2):402–411CrossRef Pan P, Liang Z, Cao A, Inoue Y (2009) Layered metal phosphonate reinforced poly (L-lactide) Composites with a highly enhanced crystallization rate. ACS Appl Mater Interfaces 1(2):402–411CrossRef
10.
Zurück zum Zitat Shen Z, Luo F, Xing Q, Si P, Lei X, Ji L, Ding S, Wang K (2016) Effect of an aryl amide derivative on the crystallization behaviour and impact toughness of poly(ethylene terephthalate). CrystEngComm 18:2135–2143CrossRef Shen Z, Luo F, Xing Q, Si P, Lei X, Ji L, Ding S, Wang K (2016) Effect of an aryl amide derivative on the crystallization behaviour and impact toughness of poly(ethylene terephthalate). CrystEngComm 18:2135–2143CrossRef
11.
Zurück zum Zitat Cui Z, Qiu Z (2015) Thermal properties and crystallization kinetics of poly(butylene suberate). Polymer 67:12–19CrossRef Cui Z, Qiu Z (2015) Thermal properties and crystallization kinetics of poly(butylene suberate). Polymer 67:12–19CrossRef
12.
Zurück zum Zitat Lim JY, Kim J, Kim S, Kwak S, Lee Y, Seo Y (2015) Nonisothermal crystallization behaviors of nanocomposites of poly(vinylidene fluoride) and multiwalled carbon nanotubes. Polymer 62:11–18CrossRef Lim JY, Kim J, Kim S, Kwak S, Lee Y, Seo Y (2015) Nonisothermal crystallization behaviors of nanocomposites of poly(vinylidene fluoride) and multiwalled carbon nanotubes. Polymer 62:11–18CrossRef
13.
Zurück zum Zitat Xu T, Zhang A, Zhao Y, Han Z, Xue L (2015) Crystallization kinetics and morphology of biodegradable poly(lactic acid) with a hydrazide nucleating agent. Polym Test 45:101–106CrossRef Xu T, Zhang A, Zhao Y, Han Z, Xue L (2015) Crystallization kinetics and morphology of biodegradable poly(lactic acid) with a hydrazide nucleating agent. Polym Test 45:101–106CrossRef
14.
Zurück zum Zitat Cruz-Delgado VJ, Ávila-Orta CA, Espinoza-Martínez AB, Mata-Padilla JM, Solis-Rosales SG, Jalbout AF, Medellín-Rodríguez FJ, Hsiao BS (2014) Carbon nanotube surface-induced crystallization of polyethylene terephthalate (PET). Polymer 55:642–650CrossRef Cruz-Delgado VJ, Ávila-Orta CA, Espinoza-Martínez AB, Mata-Padilla JM, Solis-Rosales SG, Jalbout AF, Medellín-Rodríguez FJ, Hsiao BS (2014) Carbon nanotube surface-induced crystallization of polyethylene terephthalate (PET). Polymer 55:642–650CrossRef
15.
Zurück zum Zitat Hao W, Wang X, Yang W, Zheng K (2012) Non-isothermal crystallization kinetics of recycled PET-Si3N4 nanocomposites. Polym Test 31(1):110–116CrossRef Hao W, Wang X, Yang W, Zheng K (2012) Non-isothermal crystallization kinetics of recycled PET-Si3N4 nanocomposites. Polym Test 31(1):110–116CrossRef
16.
Zurück zum Zitat Fillon B, Lotz B, Thierry A, Wittmann JC (1993) Self-nucleation and enhanced nucleation of polymers. Definition of a convenient calorimetric “efficiency scale” and evaluation of nucleating additives in isotactic polypropylene (α phase). J Polym Sci B Polym Phys 31(10):1395–1405CrossRef Fillon B, Lotz B, Thierry A, Wittmann JC (1993) Self-nucleation and enhanced nucleation of polymers. Definition of a convenient calorimetric “efficiency scale” and evaluation of nucleating additives in isotactic polypropylene (α phase). J Polym Sci B Polym Phys 31(10):1395–1405CrossRef
17.
Zurück zum Zitat Hong P-D, Chung W-T, Hsu C-F (2002) Crystallization kinetics and morphology of poly(trimethylene terephthalate). Polymer 43(11):3335–3343CrossRef Hong P-D, Chung W-T, Hsu C-F (2002) Crystallization kinetics and morphology of poly(trimethylene terephthalate). Polymer 43(11):3335–3343CrossRef
18.
Zurück zum Zitat Dou J, Liu Z (2013) Crystallization behavior of poly(ethylene terephthalate)/pyrrolidinium ionic liquid. Polym Int 62(12):1698–1710CrossRef Dou J, Liu Z (2013) Crystallization behavior of poly(ethylene terephthalate)/pyrrolidinium ionic liquid. Polym Int 62(12):1698–1710CrossRef
19.
Zurück zum Zitat Medellin-Rodriguez FJ, Phillips PJ, Lin JS (1995) Application of secondary nucleation theory to Semirigid macromolecules: PEEK, PET, and PEN. Macromolecules 28(23):7744–7755CrossRef Medellin-Rodriguez FJ, Phillips PJ, Lin JS (1995) Application of secondary nucleation theory to Semirigid macromolecules: PEEK, PET, and PEN. Macromolecules 28(23):7744–7755CrossRef
20.
Zurück zum Zitat XF L, Hay JN (2001) Isothermal crystallization kinetics and melting behaviour of poly(ethylene terephthalate). Polymer 42(23):9423–9431CrossRef XF L, Hay JN (2001) Isothermal crystallization kinetics and melting behaviour of poly(ethylene terephthalate). Polymer 42(23):9423–9431CrossRef
21.
Zurück zum Zitat Hu G, Feng X, Zhang S, Yang M (2008) Crystallization behavior of poly(ethylene terephthalate)/multiwalled carbon nanotubes composites. J Appl Polym Sci 108(6):4080–4089CrossRef Hu G, Feng X, Zhang S, Yang M (2008) Crystallization behavior of poly(ethylene terephthalate)/multiwalled carbon nanotubes composites. J Appl Polym Sci 108(6):4080–4089CrossRef
Metadaten
Titel
Enhanced crystallization behaviour and impact toughness of poly(ethylene terephthalate) with a phenyl phosphonic acid salts compound
verfasst von
Zhiyuan Shen
Faliang Luo
Xiaomei Lei
Lijie Ji
Kezhi Wang
Publikationsdatum
01.10.2016
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 10/2016
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-016-1108-0

Weitere Artikel der Ausgabe 10/2016

Journal of Polymer Research 10/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.