Skip to main content
Erschienen in: Journal of Polymer Research 4/2021

01.04.2021 | ORIGINAL PAPER

Preparation and study on properties of dual responsive block copolymer-grafted polypyrrole smart Janus nanoparticles

verfasst von: Farnaz Amani, Elham Dehghani, Mehdi Salami-Kalajahi

Erschienen in: Journal of Polymer Research | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Polypyrrole (PPy)’s great potential applications as a conductive polymer has been restricted due to its solubility issues. Herein, in order to improve the solubility of PPy in aqueous solutions and produce dual responsive smart PPy-based nanoparticles, surface-initiated atom transfer radical polymerization (SI-ATRP) has been utilized to graft the pH and temperature responsive poly(2-(dimethylamino) ethyl methacrylate) (PDMAEMA) and temperature sensitive poly(2-hydroxyethyl methacrylate) (PHEMA) on the surface of PPy nanoparticle. At first, a simple aqueous dispersion polymerization was used to prepare monodisperse and spherical PPy particles. Then, produced PPy particles were modified with a silane agent to form amine-modified PPy nanoparticles which were subsequently reacted with α-bromoisobutyryl bromide (BIBB) to form the ATRP initiator. Then, the asymmetrically modified PPy nanoparticles were utilized as initiator in SI-ATRP of DMAEMA and HEMA to form (co)polymer grafted PPy. The asymmetric modification of completely spherical PPy nanoparticles with the silane agent resulted in the formation of snowman-like and dumbbell-like Janus structures. The accuracy of the synthesis in each stage was confirmed through FTIR spectroscopy and the morphologies of resultant particles were observed via field emission scanning electron microscope (FE-SEM). The dual pH-sensitive and thermoresponsive behavior of synthesized smart particles was investigated thorough determining volume phase transition temperature (VPTT) via turbidimetry. In addition, the effect of pH, the arm length of pH-sensitive and thermoresponsive PDMAEMA block, and PHEMA second block was investigated. The results suggested both pH sensitivity and thermoresponsiveness of the produced (co)polymer-grafted PPy nanoparticles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Wan M (2008) Introduction of Conducting Polymers. In: Conducting Polymers with Micro or Nanometer Structure. Springer, Berlin, Heidelberg, p 1–15. Wan M (2008) Introduction of Conducting Polymers. In: Conducting Polymers with Micro or Nanometer Structure. Springer, Berlin, Heidelberg, p 1–15.
2.
Zurück zum Zitat Khadem F, Pishvaei M, Salami-Kalajahi M, Najafi F (2017) Morphology control of conducting polypyrrole nanostructures via operational conditions in the emulsion polymerization. J Appl Polym Sci 134:44697CrossRef Khadem F, Pishvaei M, Salami-Kalajahi M, Najafi F (2017) Morphology control of conducting polypyrrole nanostructures via operational conditions in the emulsion polymerization. J Appl Polym Sci 134:44697CrossRef
3.
Zurück zum Zitat Adeosun WA, Asiri AM, Marwani HM (2020) Fabrication of Conductive Polypyrrole Doped Chitosan Thin Film for Sensitive Detection of Sulfite in Real Food and Biological Samples. Electroanalysis 32:1725–1736CrossRef Adeosun WA, Asiri AM, Marwani HM (2020) Fabrication of Conductive Polypyrrole Doped Chitosan Thin Film for Sensitive Detection of Sulfite in Real Food and Biological Samples. Electroanalysis 32:1725–1736CrossRef
4.
Zurück zum Zitat Nezakati T, Seifalian A, Tan A, Seifalian AM (2018) Conductive polymers: opportunities and challenges in biomedical applications. Chem Rev 118:6766–6843PubMedCrossRef Nezakati T, Seifalian A, Tan A, Seifalian AM (2018) Conductive polymers: opportunities and challenges in biomedical applications. Chem Rev 118:6766–6843PubMedCrossRef
5.
Zurück zum Zitat Bagheri H, Ayazi Z, Naderi M (2013) Conductive polymer-based microextraction methods: a review. Anal Chim Acta 767:1–13PubMedCrossRef Bagheri H, Ayazi Z, Naderi M (2013) Conductive polymer-based microextraction methods: a review. Anal Chim Acta 767:1–13PubMedCrossRef
6.
Zurück zum Zitat Dehghani E, Amani F, Salami-Kalajahi M (2020) Synthesis of core-shell and Janus polystyrene@polypyrrole particles by variation of surfactant and monomer amount through seeded emulsion polymerization. Polym Adv Technol 31:2999–3007CrossRef Dehghani E, Amani F, Salami-Kalajahi M (2020) Synthesis of core-shell and Janus polystyrene@polypyrrole particles by variation of surfactant and monomer amount through seeded emulsion polymerization. Polym Adv Technol 31:2999–3007CrossRef
7.
Zurück zum Zitat Wang Y, Ding Y, Guo X, Yu G (2019) Conductive polymers for stretchable supercapacitors. Nano Res 12:1978–1987CrossRef Wang Y, Ding Y, Guo X, Yu G (2019) Conductive polymers for stretchable supercapacitors. Nano Res 12:1978–1987CrossRef
8.
Zurück zum Zitat Das TK, Prusty S (2012) Review on conducting polymers and their applications. Polym-Plast Technol Eng 51:1487–1500CrossRef Das TK, Prusty S (2012) Review on conducting polymers and their applications. Polym-Plast Technol Eng 51:1487–1500CrossRef
9.
Zurück zum Zitat Ansari R (2006) Polypyrrole conducting electroactive polymers: synthesis and stability studies. J Chem 3:860413 Ansari R (2006) Polypyrrole conducting electroactive polymers: synthesis and stability studies. J Chem 3:860413
10.
Zurück zum Zitat Guo B, Ma XP (2018) Conducting polymers for tissue engineering. Biomacromol 19:1764–1782CrossRef Guo B, Ma XP (2018) Conducting polymers for tissue engineering. Biomacromol 19:1764–1782CrossRef
11.
Zurück zum Zitat Shi Y, Peng L, Ding Y, Zhao Y, Yu G (2015) Nanostructured conductive polymers for advanced energy storage. Chem Soc Rev 44:6684–6696PubMedCrossRef Shi Y, Peng L, Ding Y, Zhao Y, Yu G (2015) Nanostructured conductive polymers for advanced energy storage. Chem Soc Rev 44:6684–6696PubMedCrossRef
12.
Zurück zum Zitat Grimsdale AC, Chan KL, Martin RE, Jokisz PG, Holmes AB (2009) Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem Rev 109:897–1091PubMedCrossRef Grimsdale AC, Chan KL, Martin RE, Jokisz PG, Holmes AB (2009) Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem Rev 109:897–1091PubMedCrossRef
13.
Zurück zum Zitat Ahuja T, Kumar D (2009) Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sens Actuat B-Chem 136:275–286CrossRef Ahuja T, Kumar D (2009) Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sens Actuat B-Chem 136:275–286CrossRef
14.
Zurück zum Zitat Pinto NJ, Johnson AT, MacDiarmid AG, Mueller CH, Theofylaktos N, Robinson DC, Miranda FA (2003) Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor. Appl Phys Lett 83:4244–4246CrossRef Pinto NJ, Johnson AT, MacDiarmid AG, Mueller CH, Theofylaktos N, Robinson DC, Miranda FA (2003) Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor. Appl Phys Lett 83:4244–4246CrossRef
15.
Zurück zum Zitat Kaur G, Adhikari R, Cass P, Bown M, Gunatillake P (2015) Electrically conductive polymers and composites for biomedical applications. RSC Adv 5:37553–37567CrossRef Kaur G, Adhikari R, Cass P, Bown M, Gunatillake P (2015) Electrically conductive polymers and composites for biomedical applications. RSC Adv 5:37553–37567CrossRef
16.
Zurück zum Zitat Kumar D, Sharma RC (1998) Advances in conductive polymers. Eur Polym J 34:1053–1060CrossRef Kumar D, Sharma RC (1998) Advances in conductive polymers. Eur Polym J 34:1053–1060CrossRef
17.
Zurück zum Zitat Neetika G, Kumar D, Tomar SK (2012) Thermal behaviour of chemically synthesized polyanilines/polystyrene sulphonic acid composites. Int J Mater Chem 2:79–85CrossRef Neetika G, Kumar D, Tomar SK (2012) Thermal behaviour of chemically synthesized polyanilines/polystyrene sulphonic acid composites. Int J Mater Chem 2:79–85CrossRef
18.
Zurück zum Zitat Rahman SU, Abul-Hamayel MA, Aleem BJA (2006) Electrochemically synthesized polypyrrole films as primer for protective coatings on carbon steel. Surf Coat Technol 200:2948–2954CrossRef Rahman SU, Abul-Hamayel MA, Aleem BJA (2006) Electrochemically synthesized polypyrrole films as primer for protective coatings on carbon steel. Surf Coat Technol 200:2948–2954CrossRef
19.
Zurück zum Zitat Minamimoto H, Toda T, Futashima R, Li X, Suzuki K, Yasuda S, Murakoshi K (2016) Visualization of active sites for plasmon-induced electron transfer reactions using photoelectrochemical polymerization of pyrrole. J Phys Chem C 120:16051–16058CrossRef Minamimoto H, Toda T, Futashima R, Li X, Suzuki K, Yasuda S, Murakoshi K (2016) Visualization of active sites for plasmon-induced electron transfer reactions using photoelectrochemical polymerization of pyrrole. J Phys Chem C 120:16051–16058CrossRef
20.
Zurück zum Zitat German N, Popov A, Ramanaviciene A, Ramanavicius A (2019) Enzymatic Formation of Polyaniline, Polypyrrole, and Polythiophene Nanoparticles with Embedded Glucose Oxidase. Nanomaterials 9:806PubMedCentralCrossRef German N, Popov A, Ramanaviciene A, Ramanavicius A (2019) Enzymatic Formation of Polyaniline, Polypyrrole, and Polythiophene Nanoparticles with Embedded Glucose Oxidase. Nanomaterials 9:806PubMedCentralCrossRef
21.
Zurück zum Zitat Sari PG, Hafizah MAE, Manaf A (2019) Increased Electrical Conductivity of Polypyrrole Through Emulsion Polymerization Assisted Emulsifier Synthesis. IOP Conf Ser Mater Sci Eng 553:012042CrossRef Sari PG, Hafizah MAE, Manaf A (2019) Increased Electrical Conductivity of Polypyrrole Through Emulsion Polymerization Assisted Emulsifier Synthesis. IOP Conf Ser Mater Sci Eng 553:012042CrossRef
22.
Zurück zum Zitat Wen L, Jeong DC, Javid A, Kim S, Nam JD, Song C, Han JG (2015) Conductive polythiophene-like thin film synthesized using controlled plasma processes. Thin Solid Films 587:66–70CrossRef Wen L, Jeong DC, Javid A, Kim S, Nam JD, Song C, Han JG (2015) Conductive polythiophene-like thin film synthesized using controlled plasma processes. Thin Solid Films 587:66–70CrossRef
23.
Zurück zum Zitat Karthikeyan M, Dominc J, Krishnamoorthy P, Balraj C, Kumar KS (2020) Oxidative solid state synthesis of polyaniline/pb composite by using lead nitrate. J Critic Rev 7:2151–2157 Karthikeyan M, Dominc J, Krishnamoorthy P, Balraj C, Kumar KS (2020) Oxidative solid state synthesis of polyaniline/pb composite by using lead nitrate. J Critic Rev 7:2151–2157
24.
Zurück zum Zitat Awuzie CI (2017) Conducting polymers Mater Today Proceed 4:5721–5726CrossRef Awuzie CI (2017) Conducting polymers Mater Today Proceed 4:5721–5726CrossRef
25.
Zurück zum Zitat Yi N, Abidian MR (2016) Conducting polymers and their biomedical applications, Biosynthetic Polymers for Medical Applications. Woodhead Publishing, p 243–276. Yi N, Abidian MR (2016) Conducting polymers and their biomedical applications, Biosynthetic Polymers for Medical Applications. Woodhead Publishing, p 243–276.
26.
27.
Zurück zum Zitat Zhao F, Shi Y, Pan L, Yu G (2017) Multifunctional nanostructured conductive polymer gels: synthesis, properties, and applications. Acc Chem Res 50:1734–1743PubMedCrossRef Zhao F, Shi Y, Pan L, Yu G (2017) Multifunctional nanostructured conductive polymer gels: synthesis, properties, and applications. Acc Chem Res 50:1734–1743PubMedCrossRef
28.
Zurück zum Zitat Chougule MA, Pawar SG, Godse PR, Shashwati SS (2011) Synthesis and characterization of polypyrrole (PPy) thin films. Soft Nanosci Lett 1:6–10CrossRef Chougule MA, Pawar SG, Godse PR, Shashwati SS (2011) Synthesis and characterization of polypyrrole (PPy) thin films. Soft Nanosci Lett 1:6–10CrossRef
29.
Zurück zum Zitat Deng L, Liu Z, Li L (2019) Hybrid nanocomposites for imaging-guided synergistic theranostics, Nanomaterials for Drug Delivery and Therapy. William Andrew Publishing, p.117–147. Deng L, Liu Z, Li L (2019) Hybrid nanocomposites for imaging-guided synergistic theranostics, Nanomaterials for Drug Delivery and Therapy. William Andrew Publishing, p.117–147.
30.
Zurück zum Zitat Wang J, Xu Y, Chen X, Du X, Li X (2007) Effect of doping ions on electrochemical capacitance properties of polypyrrole films. Acta Phys-Chim Sin 23:299–304CrossRef Wang J, Xu Y, Chen X, Du X, Li X (2007) Effect of doping ions on electrochemical capacitance properties of polypyrrole films. Acta Phys-Chim Sin 23:299–304CrossRef
31.
Zurück zum Zitat Armes SP, Miller JF, Vincent B (1987) Aqueous dispersions of electrically conducting monodisperse polypyrrole particles. J Colloid Interface Sci 118:410–416CrossRef Armes SP, Miller JF, Vincent B (1987) Aqueous dispersions of electrically conducting monodisperse polypyrrole particles. J Colloid Interface Sci 118:410–416CrossRef
32.
Zurück zum Zitat El-Aziz MSM, MEa, Morsi RMM, Hussain AI, (2019) Polypyrrole-coated latex particles as core/shell composites for antistatic coatings and energy storage applications. J Coat Technol Res 16:745–759CrossRef El-Aziz MSM, MEa, Morsi RMM, Hussain AI, (2019) Polypyrrole-coated latex particles as core/shell composites for antistatic coatings and energy storage applications. J Coat Technol Res 16:745–759CrossRef
33.
Zurück zum Zitat Fu Y, Arumugam M (2012) Core-shell structured sulfur-polypyrrole composite cathodes for lithium-sulfur batteries. RSC Adv 2:5927–5929CrossRef Fu Y, Arumugam M (2012) Core-shell structured sulfur-polypyrrole composite cathodes for lithium-sulfur batteries. RSC Adv 2:5927–5929CrossRef
34.
Zurück zum Zitat Wang C, Zheng W, Yue Z, Too CO, Wallace GG (2011) Buckled, stretchable polypyrrole electrodes for battery applications. Adv Mater 23:3580–3584PubMedCrossRef Wang C, Zheng W, Yue Z, Too CO, Wallace GG (2011) Buckled, stretchable polypyrrole electrodes for battery applications. Adv Mater 23:3580–3584PubMedCrossRef
35.
Zurück zum Zitat de Melo EF, Alves KG, Junior SA, de Melo CP (2013) Synthesis of fluorescent PVA/polypyrrole-ZnO nanofibers. J Mater Sci 48:3652–3658CrossRef de Melo EF, Alves KG, Junior SA, de Melo CP (2013) Synthesis of fluorescent PVA/polypyrrole-ZnO nanofibers. J Mater Sci 48:3652–3658CrossRef
36.
Zurück zum Zitat Li J, Hu Y, Liang X, Chen J, Zhong L, Liao L, Jiang L, Fuchs H, Wang W, Wang Y, Chi L (2020) Micro Organic Light Emitting Diode Arrays by Patterned Growth on Structured Polypyrrole. Adv Optic Mater 8:1902105CrossRef Li J, Hu Y, Liang X, Chen J, Zhong L, Liao L, Jiang L, Fuchs H, Wang W, Wang Y, Chi L (2020) Micro Organic Light Emitting Diode Arrays by Patterned Growth on Structured Polypyrrole. Adv Optic Mater 8:1902105CrossRef
37.
Zurück zum Zitat Weidlich C, Mangold KM (2011) Electrochemically switchable polypyrrole coated membranes. Electrochim Acta 56:3481–3484CrossRef Weidlich C, Mangold KM (2011) Electrochemically switchable polypyrrole coated membranes. Electrochim Acta 56:3481–3484CrossRef
38.
Zurück zum Zitat Li X, Vandezande P, Vankelecom IF (2008) Polypyrrole modified solvent resistant nanofiltration membranes. J Membr Sci 320:143–150CrossRef Li X, Vandezande P, Vankelecom IF (2008) Polypyrrole modified solvent resistant nanofiltration membranes. J Membr Sci 320:143–150CrossRef
39.
Zurück zum Zitat Yamamoto H, Fukuda M, Isa I, Yoshino K (1993) Electrolytic Capacitor Employing Polypyrrole as Solid Electrolyte. Mol Cryst Liq Cryst Sci Technol A Mol Cryst Liq Cryst 227:255–262CrossRef Yamamoto H, Fukuda M, Isa I, Yoshino K (1993) Electrolytic Capacitor Employing Polypyrrole as Solid Electrolyte. Mol Cryst Liq Cryst Sci Technol A Mol Cryst Liq Cryst 227:255–262CrossRef
40.
Zurück zum Zitat Han JS, Lee JY, Lee DS (2001) A novel thermosensitive soluble polypyrrole composite. Synth Met 124:301–306CrossRef Han JS, Lee JY, Lee DS (2001) A novel thermosensitive soluble polypyrrole composite. Synth Met 124:301–306CrossRef
41.
Zurück zum Zitat Nikdel M, Salami-Kalajahi M, Hosseini MS (2014) Dual thermo- and pH-sensitive poly(2-hydroxyethyl methacrylate-co-acrylic acid)-grafted Graphene Oxide. Colloid Polym Sci 292:2599–2610CrossRef Nikdel M, Salami-Kalajahi M, Hosseini MS (2014) Dual thermo- and pH-sensitive poly(2-hydroxyethyl methacrylate-co-acrylic acid)-grafted Graphene Oxide. Colloid Polym Sci 292:2599–2610CrossRef
42.
Zurück zum Zitat Hajebi S, Abdollahi A, Roghani-Mamaqani H, Salami-Kalajahi M (2019) Hybrid and hollow Poly(N, N-dimethylaminoethyl methacrylate) nanogels as stimuli-responsive carriers for controlled release of doxorubicin. Polymer 180:121716CrossRef Hajebi S, Abdollahi A, Roghani-Mamaqani H, Salami-Kalajahi M (2019) Hybrid and hollow Poly(N, N-dimethylaminoethyl methacrylate) nanogels as stimuli-responsive carriers for controlled release of doxorubicin. Polymer 180:121716CrossRef
43.
Zurück zum Zitat Dehghani B, Hosseini MS, Salami-Kalajahi M (2020) Neutral pH monosaccharide receptor based on boronic acid decorated poly(2-hydroxyethyl methacrylate): Spectral Methods for determination of glucose-binding and ionization constants. Microchem J 157:105112CrossRef Dehghani B, Hosseini MS, Salami-Kalajahi M (2020) Neutral pH monosaccharide receptor based on boronic acid decorated poly(2-hydroxyethyl methacrylate): Spectral Methods for determination of glucose-binding and ionization constants. Microchem J 157:105112CrossRef
44.
Zurück zum Zitat Nikdel M, Salami-Kalajahi M, Hosseini MS (2014) Synthesis of Poly(2-Hydroxyethyl Methacrylate-co-Acrylic Acid)-Grafted Graphene Oxide Nanosheets via Reversible Addition-Fragmentation Chain Transfer Polymerizations. RSC Adv 4:16743–16750CrossRef Nikdel M, Salami-Kalajahi M, Hosseini MS (2014) Synthesis of Poly(2-Hydroxyethyl Methacrylate-co-Acrylic Acid)-Grafted Graphene Oxide Nanosheets via Reversible Addition-Fragmentation Chain Transfer Polymerizations. RSC Adv 4:16743–16750CrossRef
45.
Zurück zum Zitat Torkpur-Biglarianzadeh M, Salami-Kalajahi M (2015) Multilayer Fluorescent Magnetic Nanoparticles with Dual Thermoresponsive and pH-sensitive Polymeric Nanolayers as Anti-cancer Drug Carriers. RSC Adv 5:29653–29662CrossRef Torkpur-Biglarianzadeh M, Salami-Kalajahi M (2015) Multilayer Fluorescent Magnetic Nanoparticles with Dual Thermoresponsive and pH-sensitive Polymeric Nanolayers as Anti-cancer Drug Carriers. RSC Adv 5:29653–29662CrossRef
46.
Zurück zum Zitat Pan YJ, Chen YY, Wang DR, Wei C, Guo J, Lu DR, Chu CC, Wang CC (2012) Redox/pH dual stimuli-responsive biodegradable nanohydrogels with varying responses to dithiothreitol and glutathione for controlled drug release. Biomaterials 33:6570–6579PubMedCrossRef Pan YJ, Chen YY, Wang DR, Wei C, Guo J, Lu DR, Chu CC, Wang CC (2012) Redox/pH dual stimuli-responsive biodegradable nanohydrogels with varying responses to dithiothreitol and glutathione for controlled drug release. Biomaterials 33:6570–6579PubMedCrossRef
47.
Zurück zum Zitat Abdollahi A, Roghani-Mamaqani H, Razavi B, Salami-Kalajahi M (2019) Light-Controlling of Temperature-Responsivity in Stimuli-Responsive Polymers. Polym Chem 10:5686–5720CrossRef Abdollahi A, Roghani-Mamaqani H, Razavi B, Salami-Kalajahi M (2019) Light-Controlling of Temperature-Responsivity in Stimuli-Responsive Polymers. Polym Chem 10:5686–5720CrossRef
48.
Zurück zum Zitat Islam MR, Lu Z, Li X, Sarker AK, Hu L, Choi P, Li X, Hakobyan N, Serpe MJ (2013) Responsive polymers for analytical applications: A review. Anal Chim Acta 789:17–32PubMedCrossRef Islam MR, Lu Z, Li X, Sarker AK, Hu L, Choi P, Li X, Hakobyan N, Serpe MJ (2013) Responsive polymers for analytical applications: A review. Anal Chim Acta 789:17–32PubMedCrossRef
49.
Zurück zum Zitat Foroughirad S, Haddadi-Asl V, Khosravi A, Salami-Kalajahi M (2020) Synthesis of magnetic nanoparticles-decorated halloysite nanotubes/poly([2-(acryloyloxy)ethyl]trimethylammonium chloride) hybrid nanoparticles for removal of Sunset Yellow from water. J Polym Res 27:320CrossRef Foroughirad S, Haddadi-Asl V, Khosravi A, Salami-Kalajahi M (2020) Synthesis of magnetic nanoparticles-decorated halloysite nanotubes/poly([2-(acryloyloxy)ethyl]trimethylammonium chloride) hybrid nanoparticles for removal of Sunset Yellow from water. J Polym Res 27:320CrossRef
51.
Zurück zum Zitat Abdollahi E, Khalafi-Nezhad A, Mohammadi A, Abdouss M, Salami-Kalajahi M (2018) Synthesis of new molecularly imprinted polymer via reversible addition fragmentation transfer polymerization as a drug delivery system. Polymer 143:245–257CrossRef Abdollahi E, Khalafi-Nezhad A, Mohammadi A, Abdouss M, Salami-Kalajahi M (2018) Synthesis of new molecularly imprinted polymer via reversible addition fragmentation transfer polymerization as a drug delivery system. Polymer 143:245–257CrossRef
52.
Zurück zum Zitat Hu J, Liu S (2010) Responsive polymers for detection and sensing applications: current status and future developments. Macromolecules 43:8315–8330CrossRef Hu J, Liu S (2010) Responsive polymers for detection and sensing applications: current status and future developments. Macromolecules 43:8315–8330CrossRef
53.
Zurück zum Zitat Kumar A, Galaev IY, Mattiasson B (1998) Affinity precipitation of α-amylase inhibitor from wheat meal by metal chelate affinity binding using cu (II)-loaded copolymers of 1-vinylimidazole with N-isopropylacrylamide. Biotechnol Bioeng 59:695–704PubMedCrossRef Kumar A, Galaev IY, Mattiasson B (1998) Affinity precipitation of α-amylase inhibitor from wheat meal by metal chelate affinity binding using cu (II)-loaded copolymers of 1-vinylimidazole with N-isopropylacrylamide. Biotechnol Bioeng 59:695–704PubMedCrossRef
54.
Zurück zum Zitat Nagase K, Kobayashi J, Kikuchi A, Akiyama Y, Kanazawa H, Okano T (2014) Monolithic silica rods grafted with thermoresponsive anionic polymer brushes for high-speed separation of basic biomolecules and peptides. Biomacromol 15:1204–1215CrossRef Nagase K, Kobayashi J, Kikuchi A, Akiyama Y, Kanazawa H, Okano T (2014) Monolithic silica rods grafted with thermoresponsive anionic polymer brushes for high-speed separation of basic biomolecules and peptides. Biomacromol 15:1204–1215CrossRef
55.
Zurück zum Zitat Panahian P, Salami-Kalajahi M, Hosseini MS (2014) Synthesis of Dual Thermosensitive and pH-Sensitive Hollow Nanospheres Based on Poly(acrylic acid-b-2-hydroxyethyl methacrylate) via an Atom Transfer Reversible Addition-Fragmentation Radical Process. Ind Eng Chem Res 53:8079–8086CrossRef Panahian P, Salami-Kalajahi M, Hosseini MS (2014) Synthesis of Dual Thermosensitive and pH-Sensitive Hollow Nanospheres Based on Poly(acrylic acid-b-2-hydroxyethyl methacrylate) via an Atom Transfer Reversible Addition-Fragmentation Radical Process. Ind Eng Chem Res 53:8079–8086CrossRef
56.
Zurück zum Zitat Sánchez-Moreno P, De Vicente J, Nardecchia S, Marchal AJ, Boulaiz H (2018) Thermo-sensitive nanomaterials: recent advance in synthesis and biomedical applications. Nanomaterials 8:935PubMedCentralCrossRef Sánchez-Moreno P, De Vicente J, Nardecchia S, Marchal AJ, Boulaiz H (2018) Thermo-sensitive nanomaterials: recent advance in synthesis and biomedical applications. Nanomaterials 8:935PubMedCentralCrossRef
57.
Zurück zum Zitat Panahian P, Salami-Kalajahi M, Hosseini MS (2014) Synthesis of Dual Thermoresponsive and pH-sensitive Hollow Nanospheres by Atom Transfer Radical Polymerization. J Polym Res 21:455CrossRef Panahian P, Salami-Kalajahi M, Hosseini MS (2014) Synthesis of Dual Thermoresponsive and pH-sensitive Hollow Nanospheres by Atom Transfer Radical Polymerization. J Polym Res 21:455CrossRef
58.
Zurück zum Zitat Benoit C, Talitha S, David F, Michel S, Anna SJ, Rachel AV, Patric W (2017) Dual thermo-and light-responsive coumarin-based copolymers with programmable cloud points. Polym Chem 8:4512–4519CrossRef Benoit C, Talitha S, David F, Michel S, Anna SJ, Rachel AV, Patric W (2017) Dual thermo-and light-responsive coumarin-based copolymers with programmable cloud points. Polym Chem 8:4512–4519CrossRef
59.
Zurück zum Zitat Ramesan MT, Santhi V (2018) Synthesis, characterization, conductivity and sensor application study of polypyrrole/silver doped nickel oxide nanocomposites. Compos Interfaces 25:725–741CrossRef Ramesan MT, Santhi V (2018) Synthesis, characterization, conductivity and sensor application study of polypyrrole/silver doped nickel oxide nanocomposites. Compos Interfaces 25:725–741CrossRef
60.
Zurück zum Zitat Banaei M, Salami-Kalajahi M (2015) Synthesis of Poly(2-hydroxyethyl methacrylate)-grafted Poly(aminoamide) Dendrimers as Polymeric Nanostructures. Colloid Polym Sci 293:1553–1559CrossRef Banaei M, Salami-Kalajahi M (2015) Synthesis of Poly(2-hydroxyethyl methacrylate)-grafted Poly(aminoamide) Dendrimers as Polymeric Nanostructures. Colloid Polym Sci 293:1553–1559CrossRef
61.
Zurück zum Zitat Guo Z, Shin K, Karki AB, Young DP, Kaner RB, Hahn TH (2009) Fabrication and characterization of iron oxide nanoparticles filled polypyrrole nanocomposites. J Nanoparticle Res 11:1441–1452CrossRef Guo Z, Shin K, Karki AB, Young DP, Kaner RB, Hahn TH (2009) Fabrication and characterization of iron oxide nanoparticles filled polypyrrole nanocomposites. J Nanoparticle Res 11:1441–1452CrossRef
62.
Zurück zum Zitat Ek S, Iiskola EI, Niinistö L (2004) Atomic layer deposition of amino-functionalized silica surfaces using N-(2-aminoethyl)-3-aminopropyltrimethoxysilane as a silylating agent. J Phys Chem B 108:9650–9655CrossRef Ek S, Iiskola EI, Niinistö L (2004) Atomic layer deposition of amino-functionalized silica surfaces using N-(2-aminoethyl)-3-aminopropyltrimethoxysilane as a silylating agent. J Phys Chem B 108:9650–9655CrossRef
63.
Zurück zum Zitat Banaei M, Salami-Kalajahi M (2018) A “Grafting to” Approach to Synthesize Low Cytotoxic Poly(aminoamide)-Dendrimer-grafted Fe3O4 Magnetic Nanoparticles. Adv Polym Technol 37:943–948CrossRef Banaei M, Salami-Kalajahi M (2018) A “Grafting to” Approach to Synthesize Low Cytotoxic Poly(aminoamide)-Dendrimer-grafted Fe3O4 Magnetic Nanoparticles. Adv Polym Technol 37:943–948CrossRef
64.
Zurück zum Zitat Nasiri SS, Salami-Kalajahi M, Roghani-Mamaqani H, Dehghani E (2018) Stimuli-responsive behavior of smart copolymers-grafted magnetic nanoparticles: Effect of sequence of copolymer blocks. Inorg Chim Acta 476:83–92CrossRef Nasiri SS, Salami-Kalajahi M, Roghani-Mamaqani H, Dehghani E (2018) Stimuli-responsive behavior of smart copolymers-grafted magnetic nanoparticles: Effect of sequence of copolymer blocks. Inorg Chim Acta 476:83–92CrossRef
65.
Zurück zum Zitat Noein L, Haddadi-Asl V, Salami-Kalajahi M (2017) Grafting of pH-sensitive poly(N, N-dimethylaminoethyl methacrylate-co-2-hydroxyethyl methacrylate) onto halloysite nanotubes via surface-initiated atom transfer radical polymerization for controllable drug release. Int J Polym Mater Polym Biomater 66:123–131CrossRef Noein L, Haddadi-Asl V, Salami-Kalajahi M (2017) Grafting of pH-sensitive poly(N, N-dimethylaminoethyl methacrylate-co-2-hydroxyethyl methacrylate) onto halloysite nanotubes via surface-initiated atom transfer radical polymerization for controllable drug release. Int J Polym Mater Polym Biomater 66:123–131CrossRef
66.
Zurück zum Zitat Nikravan G, Haddadi-Asl V, Salami-Kalajahi M (2018) Synthesis of dual temperature– and pH-responsive yolk-shell nanoparticles by conventional etching and new deswelling approaches: DOX release behavior. Colloids Surf B-Biointerfaces 165:1–8PubMedCrossRef Nikravan G, Haddadi-Asl V, Salami-Kalajahi M (2018) Synthesis of dual temperature– and pH-responsive yolk-shell nanoparticles by conventional etching and new deswelling approaches: DOX release behavior. Colloids Surf B-Biointerfaces 165:1–8PubMedCrossRef
67.
Zurück zum Zitat Safajou-Jahankhanemlou M, Abbasi F, Salami-Kalajahi M (2016) Synthesis and characterization of thermally expandable PMMA-based microcapsules with different cross-linking density. Colloid Polym Sci 294:1055–1064CrossRef Safajou-Jahankhanemlou M, Abbasi F, Salami-Kalajahi M (2016) Synthesis and characterization of thermally expandable PMMA-based microcapsules with different cross-linking density. Colloid Polym Sci 294:1055–1064CrossRef
68.
Zurück zum Zitat Modarresi-Saryazdi SM, Haddadi-Asl V, Salami-Kalajahi M (2018) N, N’-methylenebis(acrylamide)-crosslinked poly(acrylic acid) particles as doxorubicin carriers: A comparison between release behavior of physically loaded drug and conjugated drug via acid-labile hydrazone linkage. J Biomed Mater Res A 106:342–348PubMedCrossRef Modarresi-Saryazdi SM, Haddadi-Asl V, Salami-Kalajahi M (2018) N, N’-methylenebis(acrylamide)-crosslinked poly(acrylic acid) particles as doxorubicin carriers: A comparison between release behavior of physically loaded drug and conjugated drug via acid-labile hydrazone linkage. J Biomed Mater Res A 106:342–348PubMedCrossRef
69.
Zurück zum Zitat Xu R, Tian J, Guan Y, Zhang Y (2018) Extraordinarily Large LCST Depression Converts Nonthermosensitive Polymer to Thermosensitive. Macromolecules 52:365–375CrossRef Xu R, Tian J, Guan Y, Zhang Y (2018) Extraordinarily Large LCST Depression Converts Nonthermosensitive Polymer to Thermosensitive. Macromolecules 52:365–375CrossRef
70.
Zurück zum Zitat Backes S, Krause P, Tabaka W, Witt MU, Mukherji D, Kremer K, von Klitzing R (2017) Poly(N-isopropylacrylamide) microgels under alcoholic intoxication: When a lcst polymer shows swelling with increasing temperature. ACS Macro Lett 6:1042–1046CrossRef Backes S, Krause P, Tabaka W, Witt MU, Mukherji D, Kremer K, von Klitzing R (2017) Poly(N-isopropylacrylamide) microgels under alcoholic intoxication: When a lcst polymer shows swelling with increasing temperature. ACS Macro Lett 6:1042–1046CrossRef
71.
Zurück zum Zitat Gant RM, Abraham AA, Hou Y, Cummins BM, Grunlan MA, Coté GL (2010) Design of a self-cleaning thermoresponsive nanocomposite hydrogel membrane for implantable biosensors. Acta Biomater 6:2903–2910PubMedCrossRef Gant RM, Abraham AA, Hou Y, Cummins BM, Grunlan MA, Coté GL (2010) Design of a self-cleaning thermoresponsive nanocomposite hydrogel membrane for implantable biosensors. Acta Biomater 6:2903–2910PubMedCrossRef
72.
Zurück zum Zitat Hou Y, Matthews AR, Smitherman AM, Bulick AS, Hahn MS, Hou H, Han A, Grunlan MA (2008) Thermoresponsive nanocomposite hydrogels with cell-releasing behavior. Biomaterials 29:3175–3184PubMedCrossRef Hou Y, Matthews AR, Smitherman AM, Bulick AS, Hahn MS, Hou H, Han A, Grunlan MA (2008) Thermoresponsive nanocomposite hydrogels with cell-releasing behavior. Biomaterials 29:3175–3184PubMedCrossRef
73.
Zurück zum Zitat Kleinen J, Richtering W (2011) Rearrangements in and release from responsive microgel− polyelectrolyte complexes induced by temperature and time. J Phys Chem B 115:3804–3810PubMedCrossRef Kleinen J, Richtering W (2011) Rearrangements in and release from responsive microgel− polyelectrolyte complexes induced by temperature and time. J Phys Chem B 115:3804–3810PubMedCrossRef
74.
Zurück zum Zitat Mohammadi M, Salami-Kalajahi M, Roghani-Mamaqani H, Golshan M (2017) Synthesis and investigation of dual pH- and temperature-responsive behaviour of poly[2-(dimethylamino)ethyl methacrylate]-grafted gold nanoparticles. Appl Organometal Chem 31:e3702CrossRef Mohammadi M, Salami-Kalajahi M, Roghani-Mamaqani H, Golshan M (2017) Synthesis and investigation of dual pH- and temperature-responsive behaviour of poly[2-(dimethylamino)ethyl methacrylate]-grafted gold nanoparticles. Appl Organometal Chem 31:e3702CrossRef
75.
Zurück zum Zitat Dehghani E, Salami-Kalajahi M, Roghani-Mamaqani H (2018) Simultaneous two drugs release form Janus particles prepared via polymerization-induced phase separation approach. Colloids Surf B-Biointerfaces 170:85–91PubMedCrossRef Dehghani E, Salami-Kalajahi M, Roghani-Mamaqani H (2018) Simultaneous two drugs release form Janus particles prepared via polymerization-induced phase separation approach. Colloids Surf B-Biointerfaces 170:85–91PubMedCrossRef
76.
Zurück zum Zitat Dehghani E, Salami-Kalajahi M, Roghani-Mamaqani H, Barzgari-Mazgar T, Nasiri SS (2018) Design of polyelectrolyte core-shell and polyelectrolyte/non-polyelectrolyte Janus nanoparticles as drug nanocarriers. J Dispers Sci Technol 39:1730–1741CrossRef Dehghani E, Salami-Kalajahi M, Roghani-Mamaqani H, Barzgari-Mazgar T, Nasiri SS (2018) Design of polyelectrolyte core-shell and polyelectrolyte/non-polyelectrolyte Janus nanoparticles as drug nanocarriers. J Dispers Sci Technol 39:1730–1741CrossRef
77.
Zurück zum Zitat Dehghani E, Barzgari-Mazgar T, Salami-Kalajahi M, Kahaie-Khosrowshahi A (2020) A pH-controlled approach to fabricate electrolyte/non-electrolyte janus particles with low cytotoxicity as carriers of DOX. Mater Chem Phys 249:123000CrossRef Dehghani E, Barzgari-Mazgar T, Salami-Kalajahi M, Kahaie-Khosrowshahi A (2020) A pH-controlled approach to fabricate electrolyte/non-electrolyte janus particles with low cytotoxicity as carriers of DOX. Mater Chem Phys 249:123000CrossRef
78.
Zurück zum Zitat Fallahi-Sambaran M, Salami-Kalajahi M, Dehghani E, Abbasi F (2018) Investigation of different core-shell toward Janus morphologies by variation of surfactant and feeding composition: a study on the kinetics of DOX release. Colloids Surf B-Biointerfaces 170:578–587PubMedCrossRef Fallahi-Sambaran M, Salami-Kalajahi M, Dehghani E, Abbasi F (2018) Investigation of different core-shell toward Janus morphologies by variation of surfactant and feeding composition: a study on the kinetics of DOX release. Colloids Surf B-Biointerfaces 170:578–587PubMedCrossRef
79.
Zurück zum Zitat Fallahi-Samberan M, Salami-Kalajahi M, Dehghani E, Abbasi F (2019) Investigating Janus morphology development of poly (acrylic acid)/poly (2-(dimethylamino) ethyl methacrylate) composite particles: An experimental study and mathematical modeling of DOX release. Microchem J 145:492–500CrossRef Fallahi-Samberan M, Salami-Kalajahi M, Dehghani E, Abbasi F (2019) Investigating Janus morphology development of poly (acrylic acid)/poly (2-(dimethylamino) ethyl methacrylate) composite particles: An experimental study and mathematical modeling of DOX release. Microchem J 145:492–500CrossRef
80.
Zurück zum Zitat Zhou L, Yuan W, Yuan J, Hong X (2008) Preparation of double-responsive SiO2-g-PDMAEMA nanoparticles via ATRP. Mater Lett 62:1372–1375CrossRef Zhou L, Yuan W, Yuan J, Hong X (2008) Preparation of double-responsive SiO2-g-PDMAEMA nanoparticles via ATRP. Mater Lett 62:1372–1375CrossRef
81.
Zurück zum Zitat Keerl M, Richtering W (2007) Synergistic depression of volume phase transition temperature in copolymer microgels. Colloid Polym Sci 285:471–474CrossRef Keerl M, Richtering W (2007) Synergistic depression of volume phase transition temperature in copolymer microgels. Colloid Polym Sci 285:471–474CrossRef
82.
Zurück zum Zitat Longenecker R, Mu T, Hanna M, Burke NA, Stöver HD (2011) Thermally responsive 2-hydroxyethyl methacrylate polymers: soluble–insoluble and soluble–insoluble–soluble transitions. Macromolecules 44:8962–8971CrossRef Longenecker R, Mu T, Hanna M, Burke NA, Stöver HD (2011) Thermally responsive 2-hydroxyethyl methacrylate polymers: soluble–insoluble and soluble–insoluble–soluble transitions. Macromolecules 44:8962–8971CrossRef
83.
Zurück zum Zitat Mazloomi-Rezvani M, Salami-Kalajahi M, Roghani-Mamaqani H (2018) Fabricating core (Au)-shell (different stimuli-responsive polymers) nanoparticles via inverse emulsion polymerization: Comparing DOX release behavior in dark room and under NIR lighting. Colloids Surf B-Biointerfaces 166:144–151PubMedCrossRef Mazloomi-Rezvani M, Salami-Kalajahi M, Roghani-Mamaqani H (2018) Fabricating core (Au)-shell (different stimuli-responsive polymers) nanoparticles via inverse emulsion polymerization: Comparing DOX release behavior in dark room and under NIR lighting. Colloids Surf B-Biointerfaces 166:144–151PubMedCrossRef
84.
Zurück zum Zitat Mohammadi M, Salami-Kalajahi M, Roghani-Mamaqani H, Golshan M (2017) Effect of molecular weight and polymer concentration on the triple temperature/pH/ionic strength-sensitive behavior of poly (2-(dimethylamino) ethyl methacrylate). Int J Polym Mater Polym Biomater 66:455–461CrossRef Mohammadi M, Salami-Kalajahi M, Roghani-Mamaqani H, Golshan M (2017) Effect of molecular weight and polymer concentration on the triple temperature/pH/ionic strength-sensitive behavior of poly (2-(dimethylamino) ethyl methacrylate). Int J Polym Mater Polym Biomater 66:455–461CrossRef
Metadaten
Titel
Preparation and study on properties of dual responsive block copolymer-grafted polypyrrole smart Janus nanoparticles
verfasst von
Farnaz Amani
Elham Dehghani
Mehdi Salami-Kalajahi
Publikationsdatum
01.04.2021
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 4/2021
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-021-02498-x

Weitere Artikel der Ausgabe 4/2021

Journal of Polymer Research 4/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.