Skip to main content
Erschienen in: Journal of Sol-Gel Science and Technology 2/2016

01.02.2016 | Original Paper

The influence of tetraethoxysilane sol preparation on the electrospinning of silica nanofibers

verfasst von: Jozefien Geltmeyer, Jonathan De Roo, Freya Van den Broeck, José C. Martins, Klaartje De Buysser, Karen De Clerck

Erschienen in: Journal of Sol-Gel Science and Technology | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The critical parameters determining the electrospinning of silica nanofibers starting from tetraethoxysilane sols are reported. By controlling the reaction conditions, the rheological properties of the sol allowed for electrospinning without needing the addition of an organic polymer. This allows the polymer removal step, which is deleterious to the fibers and an economic and ecological inconvenience, to be skipped. The effects on the electrospinning process of the viscosity of the sol, the concentration of ethanol, the degree of crosslinking and the size of the colloidal species were studied in depth with ATR-FTIR, 29Si NMR, 1H NMR and DLS. Moreover, to separate the contributions of the different parameters three different set-ups for sol preparation were used. An optimum amount of 9 mol L−1 ethanol for electrospinning was determined. In addition, the optimum degree of crosslinking and size of colloidal particles, approximately 3.5–7 nm, were obtained for stable electrospinning and for producing uniform, beadless nanofibers that were stable in time. The optimum viscosity range is in between 100 and 200 mPa s, which is in line with previous work. Using these optimum conditions, continuous electrospinning was carried out for 3 h, resulting in large flexible silica nanofibrous membranes.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dai Y, Liu W, Formo E, Sun Y, Xia Y (2011) Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science and energy technology. Polym Adv Technol 22:326–338CrossRef Dai Y, Liu W, Formo E, Sun Y, Xia Y (2011) Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science and energy technology. Polym Adv Technol 22:326–338CrossRef
2.
Zurück zum Zitat Sigmund W, Yuh J, Park H, Maneeratana V, Pyrgiotakis G, Daga A, Taylor J, Nino J (2006) Processing and structure relationships in electrospinning of ceramic fiber systems. J Am Ceram Soc 89(2):395–407CrossRef Sigmund W, Yuh J, Park H, Maneeratana V, Pyrgiotakis G, Daga A, Taylor J, Nino J (2006) Processing and structure relationships in electrospinning of ceramic fiber systems. J Am Ceram Soc 89(2):395–407CrossRef
3.
Zurück zum Zitat Li D, McCann J, Xia Y, Marquez M (2006) Electrospinning: a simple and versatile technique for producing ceramic nanofibers and nanotubes. J Am Ceram Soc 89(6):1861–1869CrossRef Li D, McCann J, Xia Y, Marquez M (2006) Electrospinning: a simple and versatile technique for producing ceramic nanofibers and nanotubes. J Am Ceram Soc 89(6):1861–1869CrossRef
4.
Zurück zum Zitat Ramaseshan R, Sundarrajan S, Jose R, Ramakrishna S (2007) Nanostructured ceramics by electrospinning. J Appl Phys 102(11):111101CrossRef Ramaseshan R, Sundarrajan S, Jose R, Ramakrishna S (2007) Nanostructured ceramics by electrospinning. J Appl Phys 102(11):111101CrossRef
5.
Zurück zum Zitat Cavaliere S, Subianto S, Savych I, Jones DJ, Rozière J (2011) Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ Sci 4:4761–4785CrossRef Cavaliere S, Subianto S, Savych I, Jones DJ, Rozière J (2011) Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ Sci 4:4761–4785CrossRef
6.
Zurück zum Zitat Du P, Song L, Xiong J, Cui C (2013) Optimization of electrospun TiO2 nanofibers photoanode film for dye-sensitized solar cells through interfacial pretreatment, controllable calcination, and surface post-treatment. Surf Interface Anal 45:1878–1883CrossRef Du P, Song L, Xiong J, Cui C (2013) Optimization of electrospun TiO2 nanofibers photoanode film for dye-sensitized solar cells through interfacial pretreatment, controllable calcination, and surface post-treatment. Surf Interface Anal 45:1878–1883CrossRef
7.
Zurück zum Zitat Wang X, Fan H, Ren P, Yu H, Li J (2012) A simple route to disperse silver nanoparticles on the surface of silica nanofibers with excellent photocatalytic properties. Mater Res Bull 47:1734–1739CrossRef Wang X, Fan H, Ren P, Yu H, Li J (2012) A simple route to disperse silver nanoparticles on the surface of silica nanofibers with excellent photocatalytic properties. Mater Res Bull 47:1734–1739CrossRef
8.
Zurück zum Zitat Irani M, Keshtkar AR, Moosavian MA (2012) Removal of cadmium from aqueous solution using mesoporous PVA/TEOS/APTES composite nanofibers prepared by sol–gel electrospinning. Chem Eng J 200:192–201CrossRef Irani M, Keshtkar AR, Moosavian MA (2012) Removal of cadmium from aqueous solution using mesoporous PVA/TEOS/APTES composite nanofibers prepared by sol–gel electrospinning. Chem Eng J 200:192–201CrossRef
9.
Zurück zum Zitat Wu S, Li F, Wu Y, Xu R, Li G (2010) Preparation of novel poly(vinyl alcohol)/SiO2 composite nanofiber membranes with mesostructure and their application for removal of Cu2+ from waste water. Chem Commun 46:1694–1696CrossRef Wu S, Li F, Wu Y, Xu R, Li G (2010) Preparation of novel poly(vinyl alcohol)/SiO2 composite nanofiber membranes with mesostructure and their application for removal of Cu2+ from waste water. Chem Commun 46:1694–1696CrossRef
10.
Zurück zum Zitat Ma Z, Ji H, Teng Y, Dong G, Zhou J, Tan D, Qiu J (2011) Engineering and optimization of nano- and mesoporous silica fibers using sol–gel and electrospinning techniques for sorption of heavy metal ions. J Colloid Interface Sci 358:547–553CrossRef Ma Z, Ji H, Teng Y, Dong G, Zhou J, Tan D, Qiu J (2011) Engineering and optimization of nano- and mesoporous silica fibers using sol–gel and electrospinning techniques for sorption of heavy metal ions. J Colloid Interface Sci 358:547–553CrossRef
11.
Zurück zum Zitat Sundarrajan S, Chandrasekaran AR, Ramakrishna S (2010) An update on nanomaterials-based textiles for protection and decontamination. J Am Ceram Soc 93(12):3955–3975CrossRef Sundarrajan S, Chandrasekaran AR, Ramakrishna S (2010) An update on nanomaterials-based textiles for protection and decontamination. J Am Ceram Soc 93(12):3955–3975CrossRef
12.
Zurück zum Zitat Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma Z, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Review feature. Mater Today 9(3):40–50CrossRef Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma Z, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Review feature. Mater Today 9(3):40–50CrossRef
13.
Zurück zum Zitat Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma Z (2005) An introduction to electrospinning of nanofibers. World Scientific, SingaporeCrossRef Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma Z (2005) An introduction to electrospinning of nanofibers. World Scientific, SingaporeCrossRef
14.
Zurück zum Zitat Wendorff JH, Agarwal S, Greiner A (2012) Electrospinning: materials, processing and applications. Wiley, WeinheimCrossRef Wendorff JH, Agarwal S, Greiner A (2012) Electrospinning: materials, processing and applications. Wiley, WeinheimCrossRef
15.
Zurück zum Zitat Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel. Adv Mater 16(14):1151–1170CrossRef Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel. Adv Mater 16(14):1151–1170CrossRef
16.
Zurück zum Zitat Greiner A, Wendorff J (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46:5670–5703CrossRef Greiner A, Wendorff J (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46:5670–5703CrossRef
17.
Zurück zum Zitat De Schoenmaker B, Goethals A, Van der Schueren L, Rahier H, De Clerck K (2012) Polyamide 6.9 nanofibres electrospun under steady state conditions from a solvent/non-solvent solution. J Mater Sci 47:4118–4126CrossRef De Schoenmaker B, Goethals A, Van der Schueren L, Rahier H, De Clerck K (2012) Polyamide 6.9 nanofibres electrospun under steady state conditions from a solvent/non-solvent solution. J Mater Sci 47:4118–4126CrossRef
18.
Zurück zum Zitat De Vrieze S, De Schoenmaker B, Ceylan O, Depuydt J, Van Landuyt L, Rahier H, Van Assche G, De Clerck K (2011) Morphologic study of steady state electrospun polyamide 6 nanofibres. J Appl Polym Sci 119(5):2984–2990CrossRef De Vrieze S, De Schoenmaker B, Ceylan O, Depuydt J, Van Landuyt L, Rahier H, Van Assche G, De Clerck K (2011) Morphologic study of steady state electrospun polyamide 6 nanofibres. J Appl Polym Sci 119(5):2984–2990CrossRef
19.
Zurück zum Zitat Van der Schueren L, De Schoenmaker B, Kalaoglu Ö, De Clerck K (2011) An alternative solvent system for the steady state electrospinning of polycaprolactone. Eur Polym J 47(6):1256–1263CrossRef Van der Schueren L, De Schoenmaker B, Kalaoglu Ö, De Clerck K (2011) An alternative solvent system for the steady state electrospinning of polycaprolactone. Eur Polym J 47(6):1256–1263CrossRef
20.
Zurück zum Zitat Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, San Diego Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, San Diego
21.
Zurück zum Zitat Carter CB, Norton MG (2007) Ceramic materials. Science and engineering. Springer, New York Carter CB, Norton MG (2007) Ceramic materials. Science and engineering. Springer, New York
22.
Zurück zum Zitat Mahltig B, Textor T (2008) Nanosols and textiles. World Scientific, SingaporeCrossRef Mahltig B, Textor T (2008) Nanosols and textiles. World Scientific, SingaporeCrossRef
23.
Zurück zum Zitat Choi SS, Lee SG, Im SS, Kim SG, Joo YL (2003) Silica nanofibers from electrospinning/sol–gel process. J Mater Sci Lett 22:891–893CrossRef Choi SS, Lee SG, Im SS, Kim SG, Joo YL (2003) Silica nanofibers from electrospinning/sol–gel process. J Mater Sci Lett 22:891–893CrossRef
24.
Zurück zum Zitat Choi SS, Chu B, Lee SG, Lee SW, Im SS, Kim SH, Park JK (2004) Titania-doped silica fibers prepared by electrospinning and sol–gel process. J Sol–Gel Sci Technol 30:215–221CrossRef Choi SS, Chu B, Lee SG, Lee SW, Im SS, Kim SH, Park JK (2004) Titania-doped silica fibers prepared by electrospinning and sol–gel process. J Sol–Gel Sci Technol 30:215–221CrossRef
25.
Zurück zum Zitat Toskas G, Cherif C, Hund RD, Laourine E, Mahltig B, Fahmi C, Heinemann C, Hanke T (2013) Chitosan(PEO)/silica hybrid nanofibers as a potential material for bone regeneration. Carbohydr Polym 94:713–722CrossRef Toskas G, Cherif C, Hund RD, Laourine E, Mahltig B, Fahmi C, Heinemann C, Hanke T (2013) Chitosan(PEO)/silica hybrid nanofibers as a potential material for bone regeneration. Carbohydr Polym 94:713–722CrossRef
26.
Zurück zum Zitat Li D, Xia Y (2003) Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett 3:555CrossRef Li D, Xia Y (2003) Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett 3:555CrossRef
27.
Zurück zum Zitat Li D, Xia Y (2004) Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett 3:933CrossRef Li D, Xia Y (2004) Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett 3:933CrossRef
28.
Zurück zum Zitat Azad AM (2006) Fabrication of transparent alumina (Al2O3) nanofibers by electrospinning. Mater Sci Eng A 435–436:468–473CrossRef Azad AM (2006) Fabrication of transparent alumina (Al2O3) nanofibers by electrospinning. Mater Sci Eng A 435–436:468–473CrossRef
29.
Zurück zum Zitat Formo E, Camargo PHC, Lim B, Jiang MJ, Xia YN (2009) Functionalization of ZrO2 nanofibers with Pt nanostructures: the effect of surface roughness on nucleation mechanism and morphology control. Chem Phys Lett 476:56–61CrossRef Formo E, Camargo PHC, Lim B, Jiang MJ, Xia YN (2009) Functionalization of ZrO2 nanofibers with Pt nanostructures: the effect of surface roughness on nucleation mechanism and morphology control. Chem Phys Lett 476:56–61CrossRef
30.
Zurück zum Zitat Formo E, Yavuz MS, Lee EP, Lane L, Xia YN (2009) Functionalization of electrospun ceramic nanofiber membranes with noble-metal nanostructures for catalytic applications. J Mater Chem 19:3878–3882CrossRef Formo E, Yavuz MS, Lee EP, Lane L, Xia YN (2009) Functionalization of electrospun ceramic nanofiber membranes with noble-metal nanostructures for catalytic applications. J Mater Chem 19:3878–3882CrossRef
31.
Zurück zum Zitat Lee SX, Kim YU, Choi SS, Park TY, Joo YL (2007) Preparation of SiO2/TiO2 composite fibers by sol–gel reaction and electrospinning. Mater Lett 61(3):889–893CrossRef Lee SX, Kim YU, Choi SS, Park TY, Joo YL (2007) Preparation of SiO2/TiO2 composite fibers by sol–gel reaction and electrospinning. Mater Lett 61(3):889–893CrossRef
32.
Zurück zum Zitat Geltmeyer J, Van der Schueren L, Goethals F, De Buysser K, De Clerck K (2013) Optimum sol viscosity for stable electrospinning of silica nanofibers. J Sol–Gel Sci Technol 67(1):188–195CrossRef Geltmeyer J, Van der Schueren L, Goethals F, De Buysser K, De Clerck K (2013) Optimum sol viscosity for stable electrospinning of silica nanofibers. J Sol–Gel Sci Technol 67(1):188–195CrossRef
33.
Zurück zum Zitat Brinker CJ, Assink RA (1989) Spinnability of silica sols: structural and rheological criteria. J Non-Cryst Solids 111:48–54CrossRef Brinker CJ, Assink RA (1989) Spinnability of silica sols: structural and rheological criteria. J Non-Cryst Solids 111:48–54CrossRef
34.
Zurück zum Zitat Sakka S, Yoko T (1992) Fibers from gels. J Non-Cryst Solids 147–148:394–403CrossRef Sakka S, Yoko T (1992) Fibers from gels. J Non-Cryst Solids 147–148:394–403CrossRef
35.
Zurück zum Zitat Sakka S, Kozuka H (1988) Rheology of sols and fiber drawing. J Non-Cryst Solid 100:142–153CrossRef Sakka S, Kozuka H (1988) Rheology of sols and fiber drawing. J Non-Cryst Solid 100:142–153CrossRef
36.
Zurück zum Zitat Pouxviel JC, Boilot JP (1987) NMR study of the sol/gel polymerization. J Non-Cryst Solids 89:345–360CrossRef Pouxviel JC, Boilot JP (1987) NMR study of the sol/gel polymerization. J Non-Cryst Solids 89:345–360CrossRef
37.
Zurück zum Zitat Depla A et al (2011) UV-Raman and 29Si NMR spectroscopy investigation of the nature of silicate oligomers formed by acid catalyzed hydrolysis and polycondensation of tetramethylorthosilicate. J Phys Chem 115:11077–11088 Depla A et al (2011) UV-Raman and 29Si NMR spectroscopy investigation of the nature of silicate oligomers formed by acid catalyzed hydrolysis and polycondensation of tetramethylorthosilicate. J Phys Chem 115:11077–11088
38.
Zurück zum Zitat Depla A et al (2011) 29Si NMR and UV-Raman investigation of initial oligomerization reaction pathways in acid-catalyzed silica sol–gel chemistry. J Phys Chem 115:3562–3571 Depla A et al (2011) 29Si NMR and UV-Raman investigation of initial oligomerization reaction pathways in acid-catalyzed silica sol–gel chemistry. J Phys Chem 115:3562–3571
39.
Zurück zum Zitat Malay O, Yilgor I, Menceloglu Y (2013) Effect of solvent on TEOS hydrolysis kinetics and silica particle size under basic conditions. J Sol–Gel Sci Technol 67:351–361CrossRef Malay O, Yilgor I, Menceloglu Y (2013) Effect of solvent on TEOS hydrolysis kinetics and silica particle size under basic conditions. J Sol–Gel Sci Technol 67:351–361CrossRef
40.
Zurück zum Zitat Sadisivan S, Dubey AK, Li Y, Rasmussen DH (1998) Alcoholic solvent effect on silica synthesis—NMR and DLS investigation. J Sol–Gel Sci Technol 12:5–14CrossRef Sadisivan S, Dubey AK, Li Y, Rasmussen DH (1998) Alcoholic solvent effect on silica synthesis—NMR and DLS investigation. J Sol–Gel Sci Technol 12:5–14CrossRef
41.
Zurück zum Zitat Smith B (1999) Infrared spectral interpretation: a systematic approach. CRC Press, Boca Raton Smith B (1999) Infrared spectral interpretation: a systematic approach. CRC Press, Boca Raton
42.
Zurück zum Zitat Pirzada T, Arvidson SA, Saquing CD, Shah SS, Khan SA (2012) Hybrid silica-PVA nanofibers via sol–gel electrospinning. Langmuir 28:5834–5844CrossRef Pirzada T, Arvidson SA, Saquing CD, Shah SS, Khan SA (2012) Hybrid silica-PVA nanofibers via sol–gel electrospinning. Langmuir 28:5834–5844CrossRef
43.
Zurück zum Zitat Innocenzi P (2003) Infrared spectroscopy of sol–gel derived silica-based films: a spectra-microstructure overview. J Non-Cryst Solids 316:309–319CrossRef Innocenzi P (2003) Infrared spectroscopy of sol–gel derived silica-based films: a spectra-microstructure overview. J Non-Cryst Solids 316:309–319CrossRef
44.
Zurück zum Zitat McCormick AV, Bell AT, Radke CJ (1987) Quantitative determination of siliceous species in sodium silicate solutions by 29Si NMR spectroscopy. Zeolites 7:183CrossRef McCormick AV, Bell AT, Radke CJ (1987) Quantitative determination of siliceous species in sodium silicate solutions by 29Si NMR spectroscopy. Zeolites 7:183CrossRef
45.
Zurück zum Zitat Schwarz J, Contescu X (1999) Surfaces of nanoparticles and porous materials. Marcel Dekker, New YorkCrossRef Schwarz J, Contescu X (1999) Surfaces of nanoparticles and porous materials. Marcel Dekker, New YorkCrossRef
46.
Zurück zum Zitat Bahlmann E, Harris R, Say B (1993) Method for the quantification of silicon-29 NMR spectra, developed for viscous silicate solutions. Magn Reson Chem 31:266–267CrossRef Bahlmann E, Harris R, Say B (1993) Method for the quantification of silicon-29 NMR spectra, developed for viscous silicate solutions. Magn Reson Chem 31:266–267CrossRef
47.
Zurück zum Zitat Iler RK (1979) The chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry of silica. Wiley, New York Iler RK (1979) The chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry of silica. Wiley, New York
48.
Zurück zum Zitat He JH, Liu Y, Mo LF, Wan YQ, Xu L (2008) Electrospun nanofibers and their applications iSmithers. Shawbury, UK He JH, Liu Y, Mo LF, Wan YQ, Xu L (2008) Electrospun nanofibers and their applications iSmithers. Shawbury, UK
Metadaten
Titel
The influence of tetraethoxysilane sol preparation on the electrospinning of silica nanofibers
verfasst von
Jozefien Geltmeyer
Jonathan De Roo
Freya Van den Broeck
José C. Martins
Klaartje De Buysser
Karen De Clerck
Publikationsdatum
01.02.2016
Verlag
Springer US
Erschienen in
Journal of Sol-Gel Science and Technology / Ausgabe 2/2016
Print ISSN: 0928-0707
Elektronische ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-015-3875-1

Weitere Artikel der Ausgabe 2/2016

Journal of Sol-Gel Science and Technology 2/2016 Zur Ausgabe

Brief Communication: Nano-structured materials (particles, fibers, colloids, composites, etc.)

Novel yolk–shell structured silica nanosphere with a movable silica-coated gold core

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.