Skip to main content
Erschienen in: Meccanica 8/2015

01.08.2015

Fractional order thermoelastic interactions in an infinite porous material due to distributed time-dependent heat sources

verfasst von: M. Bachher, N. Sarkar, A. Lahiri

Erschienen in: Meccanica | Ausgabe 8/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present work, a fractional order Lord & Shulman model of generalized thermoelasticity with voids subjected to a continuous heat sources in a plane area has been established using the Caputo fractional derivative and applied to solve a problem of determining the distributions of the temperature field, the change in volume fraction field, the deformation and the stress field in an infinite elastic medium. The Laplace transform together with an eigenvalue approach technique is applied to find a closed form solution in the Laplace transform domain. The numerical inversions of the physical variables in the space-time domain are carried out by using the Zakian algorithm for the inversion of Laplace transform. Numerical results are shown graphically and the results obtained are analyzed .

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ignaczak J, Ostoja-Starzewski M (2010) Thermoelasticity with finite wave speeds. Oxford University Press, New York Ignaczak J, Ostoja-Starzewski M (2010) Thermoelasticity with finite wave speeds. Oxford University Press, New York
2.
Zurück zum Zitat Chandrasekharaiah DS (1998) Hyperbolic thermoelasticity: a review of recent literature. Appl Mech Rev 51:705–729ADSCrossRef Chandrasekharaiah DS (1998) Hyperbolic thermoelasticity: a review of recent literature. Appl Mech Rev 51:705–729ADSCrossRef
3.
Zurück zum Zitat Hetnarski RB, Ignaczak J (1999) Generalized thermoelasticity. J Thermal Stress 1999(22):451–476MathSciNet Hetnarski RB, Ignaczak J (1999) Generalized thermoelasticity. J Thermal Stress 1999(22):451–476MathSciNet
4.
Zurück zum Zitat Goodman MA, Cowin SC (1971) A continuum theory of granular material. Arch Rational Mech Anal 44:249–266MathSciNetADS Goodman MA, Cowin SC (1971) A continuum theory of granular material. Arch Rational Mech Anal 44:249–266MathSciNetADS
5.
6.
Zurück zum Zitat Cowin SC, Nunziato JW (1983) Linear elastic materials with voids. J Elast 13:125–147CrossRef Cowin SC, Nunziato JW (1983) Linear elastic materials with voids. J Elast 13:125–147CrossRef
7.
Zurück zum Zitat Iesan D (1986) A theory of thermoelastic materials with voids. Acta Mech 60:67–89CrossRef Iesan D (1986) A theory of thermoelastic materials with voids. Acta Mech 60:67–89CrossRef
8.
Zurück zum Zitat Cicco SD, Diaco M (2002) A theory of thermo-elastic material with voids without energy dissipation. J Thermal Stress 25:493–503CrossRef Cicco SD, Diaco M (2002) A theory of thermo-elastic material with voids without energy dissipation. J Thermal Stress 25:493–503CrossRef
9.
Zurück zum Zitat Quintanilla R (2002) Exponential stability for one-dimensional problem of swelling porous elastic soils with fluid saturation. J Comput Appl Math 145:525–533MathSciNetADSCrossRef Quintanilla R (2002) Exponential stability for one-dimensional problem of swelling porous elastic soils with fluid saturation. J Comput Appl Math 145:525–533MathSciNetADSCrossRef
10.
Zurück zum Zitat Quintanilla R (2003) Slow decay for one-dimensional porous dissipation elasticity. Appl Math Lett 16:487–491MathSciNetCrossRef Quintanilla R (2003) Slow decay for one-dimensional porous dissipation elasticity. Appl Math Lett 16:487–491MathSciNetCrossRef
11.
Zurück zum Zitat Casas PS, Quintanilla R (2005) Exponential decay in one-dimensional porous-themoelasticity. Mech Res Commun 32:652–658MathSciNetCrossRef Casas PS, Quintanilla R (2005) Exponential decay in one-dimensional porous-themoelasticity. Mech Res Commun 32:652–658MathSciNetCrossRef
12.
Zurück zum Zitat Magaña A, Quintanilla R (2006) On the time decay of solutions in one-dimensional theories of porous materials. Int J Solids Struct 43:3414–3427CrossRef Magaña A, Quintanilla R (2006) On the time decay of solutions in one-dimensional theories of porous materials. Int J Solids Struct 43:3414–3427CrossRef
13.
Zurück zum Zitat Magaña A, Quintanilla R (2006) On the exponential decay of solutions in one-dimensional generalized porous-thermo-elasticity. Asymptot Anal 49:173–187 Magaña A, Quintanilla R (2006) On the exponential decay of solutions in one-dimensional generalized porous-thermo-elasticity. Asymptot Anal 49:173–187
14.
Zurück zum Zitat Magaña A, Quintanilla R (2007) On the time decay of solutions in porous elasticity with quasi-static micro voids. J Math Anal Appl 331:617–630MathSciNetCrossRef Magaña A, Quintanilla R (2007) On the time decay of solutions in porous elasticity with quasi-static micro voids. J Math Anal Appl 331:617–630MathSciNetCrossRef
15.
Zurück zum Zitat Soufyane A, Afilal M, Aouam M, Chacha M (2010) General decay of solutions of a linear one-dimensional porous-thermoelasticity system with a boundary control of memory type. Nonlinear Anal 72:3903–3910MathSciNetCrossRef Soufyane A, Afilal M, Aouam M, Chacha M (2010) General decay of solutions of a linear one-dimensional porous-thermoelasticity system with a boundary control of memory type. Nonlinear Anal 72:3903–3910MathSciNetCrossRef
16.
Zurück zum Zitat Messaoudi SA, Fareh A (2011) General decay for a porous thermoelastic system with memory: the case of equal speeds. Nonlinear Anal 74:6895–6906MathSciNetCrossRef Messaoudi SA, Fareh A (2011) General decay for a porous thermoelastic system with memory: the case of equal speeds. Nonlinear Anal 74:6895–6906MathSciNetCrossRef
17.
Zurück zum Zitat Pamplona PX, Rivera JEM, Quintanilla R (2011) On the decay of solutions for porous-elastic systems with history. J Math Anal Appl 379:682–705MathSciNetCrossRef Pamplona PX, Rivera JEM, Quintanilla R (2011) On the decay of solutions for porous-elastic systems with history. J Math Anal Appl 379:682–705MathSciNetCrossRef
19.
Zurück zum Zitat Pamplona PX, Rivera JEM, Quintanilla R (2012) Analyticity in porous-thermoelasticity with microtemperatures. J Math Anal Appl 394:645–655MathSciNetCrossRef Pamplona PX, Rivera JEM, Quintanilla R (2012) Analyticity in porous-thermoelasticity with microtemperatures. J Math Anal Appl 394:645–655MathSciNetCrossRef
20.
Zurück zum Zitat Han Z-J, Xu GQ (2012) Exponential decay in non-uniform porous-thermoe-elasticity model of Lord–Shulman type. Discrete Contin Dyn Syst B 17:57–77MathSciNetCrossRef Han Z-J, Xu GQ (2012) Exponential decay in non-uniform porous-thermoe-elasticity model of Lord–Shulman type. Discrete Contin Dyn Syst B 17:57–77MathSciNetCrossRef
21.
Zurück zum Zitat Messaoudi SA, Fareh A (2013) General decay for a porous thermoelastic system with memory: the case of nonequal speeds. Acta Math Sci 33:23–40MathSciNetCrossRef Messaoudi SA, Fareh A (2013) General decay for a porous thermoelastic system with memory: the case of nonequal speeds. Acta Math Sci 33:23–40MathSciNetCrossRef
22.
Zurück zum Zitat Abel NH (1823) Solution de quelques problèms à l’aide d’intégrales défines. Magazin Naturvidenskaberne 1:55–68 Abel NH (1823) Solution de quelques problèms à l’aide d’intégrales défines. Magazin Naturvidenskaberne 1:55–68
23.
Zurück zum Zitat Caputo M (1967) Linear model of dissipation whose Q is almost frequency independent—II. Geophys J R Astron Soc 13:529–539ADSCrossRef Caputo M (1967) Linear model of dissipation whose Q is almost frequency independent—II. Geophys J R Astron Soc 13:529–539ADSCrossRef
24.
Zurück zum Zitat Caputo M, Mainardi F (1971) A new dissipation model based on memory mechanism. Pure Appl Geophys 91:134–147ADSCrossRef Caputo M, Mainardi F (1971) A new dissipation model based on memory mechanism. Pure Appl Geophys 91:134–147ADSCrossRef
25.
Zurück zum Zitat Caputo M, Mainardi F (1971) Linear models of dissipation in an elastic solid. Rivis ta Del Nuovo Cimento 1:161–198ADSCrossRef Caputo M, Mainardi F (1971) Linear models of dissipation in an elastic solid. Rivis ta Del Nuovo Cimento 1:161–198ADSCrossRef
26.
Zurück zum Zitat Caputo M (1974) Vibrations of an infinite viscoelastic layer with a dissipative memory. J Acoust Soc Am 56:897–904ADSCrossRef Caputo M (1974) Vibrations of an infinite viscoelastic layer with a dissipative memory. J Acoust Soc Am 56:897–904ADSCrossRef
27.
Zurück zum Zitat Oldham KB, Spanier J (1974) The fractional calculus. Academic Press, New York Oldham KB, Spanier J (1974) The fractional calculus. Academic Press, New York
28.
Zurück zum Zitat Bagley RL, Torvik PJ (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27:201–307ADSCrossRef Bagley RL, Torvik PJ (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27:201–307ADSCrossRef
29.
Zurück zum Zitat Koeller RC (1984) Applications of fractional calculus to the theory of viscoelasticity. J Appl Mech 51:299–307MathSciNetCrossRef Koeller RC (1984) Applications of fractional calculus to the theory of viscoelasticity. J Appl Mech 51:299–307MathSciNetCrossRef
30.
Zurück zum Zitat Rossikhin YA, Shitikova MV (1997) Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl Mech Rev 50:15–67ADSCrossRef Rossikhin YA, Shitikova MV (1997) Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl Mech Rev 50:15–67ADSCrossRef
31.
Zurück zum Zitat Povstenko YZ (2005) Fractional heat conduction equation and associated thermal stress. J Thermal Stress 28:83–102MathSciNetCrossRef Povstenko YZ (2005) Fractional heat conduction equation and associated thermal stress. J Thermal Stress 28:83–102MathSciNetCrossRef
32.
Zurück zum Zitat Povstenko YZ (2011) Fractional Cattaneo-type equations and generalized thermoelasticity. J Thermal Stress 34:97–114CrossRef Povstenko YZ (2011) Fractional Cattaneo-type equations and generalized thermoelasticity. J Thermal Stress 34:97–114CrossRef
34.
Zurück zum Zitat Youssef H, Al-Lehaibi E (2010) Fractional order generalized thermoelastic half space subjected to ramp type heating. Mech Res Commun 37:448–452CrossRef Youssef H, Al-Lehaibi E (2010) Fractional order generalized thermoelastic half space subjected to ramp type heating. Mech Res Commun 37:448–452CrossRef
35.
Zurück zum Zitat Sherief HH, El-Sayed A, El-Latief A (2010) Fractional order theory of thermoelasticity. Int J Solids Struct 47:269–275CrossRef Sherief HH, El-Sayed A, El-Latief A (2010) Fractional order theory of thermoelasticity. Int J Solids Struct 47:269–275CrossRef
36.
Zurück zum Zitat Ezzat MA, Fayik MA (2011) Fractional order theory of thermoelastic diffusion. J Thermal Stress 34:851–872CrossRef Ezzat MA, Fayik MA (2011) Fractional order theory of thermoelastic diffusion. J Thermal Stress 34:851–872CrossRef
37.
Zurück zum Zitat Othman MIA, Sarkar N, Atwa SY (2013) Effect of fractional parameter on plane waves of generalized magneto-thermoelastic diffusion with reference temperature-dependent elastic medium. Comput Math Appl 65:1103–1118MathSciNetCrossRef Othman MIA, Sarkar N, Atwa SY (2013) Effect of fractional parameter on plane waves of generalized magneto-thermoelastic diffusion with reference temperature-dependent elastic medium. Comput Math Appl 65:1103–1118MathSciNetCrossRef
38.
Zurück zum Zitat Kothari S, Mukhopadhyay S (2013) Fractional order thermoelasticity for an infinite medium with a spherical cavity subjected to different types of thermal loading. J Thermoelast 1:35–41 Kothari S, Mukhopadhyay S (2013) Fractional order thermoelasticity for an infinite medium with a spherical cavity subjected to different types of thermal loading. J Thermoelast 1:35–41
39.
Zurück zum Zitat Lord HW, Shulman YA (1967) Generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15:299–309ADSCrossRef Lord HW, Shulman YA (1967) Generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15:299–309ADSCrossRef
40.
Zurück zum Zitat Debnath L, Bhatta D (2007) Integral transforms and their applications. Chapman and Hall/CRC, Taylor and Francis Group, London, New York Debnath L, Bhatta D (2007) Integral transforms and their applications. Chapman and Hall/CRC, Taylor and Francis Group, London, New York
41.
Zurück zum Zitat Sarkar N, Lahiri A (2012) A three-dimensional thermoelastic problem for a half-space without energy dissipation. Int J Eng Sci 51:310–325MathSciNetCrossRef Sarkar N, Lahiri A (2012) A three-dimensional thermoelastic problem for a half-space without energy dissipation. Int J Eng Sci 51:310–325MathSciNetCrossRef
42.
Zurück zum Zitat Sarkar N (2013) On the discontinuity solution of the Lord–Shulman model in generalized thermoelasticity. Appl Math Comput 219:10245–10252MathSciNetCrossRef Sarkar N (2013) On the discontinuity solution of the Lord–Shulman model in generalized thermoelasticity. Appl Math Comput 219:10245–10252MathSciNetCrossRef
43.
Zurück zum Zitat Sarkar N, Lahiri A (2013) The effect of gravity field on the plane waves in a fiber-reinforced two-temperature magneto-thermoelastic medium under Lord–Shulman theory. J Thermal Stress 36:895–914CrossRef Sarkar N, Lahiri A (2013) The effect of gravity field on the plane waves in a fiber-reinforced two-temperature magneto-thermoelastic medium under Lord–Shulman theory. J Thermal Stress 36:895–914CrossRef
44.
Zurück zum Zitat Zakian V (1969) Numerical inversions of Laplace transforms. Electron Lett 5:120–121CrossRef Zakian V (1969) Numerical inversions of Laplace transforms. Electron Lett 5:120–121CrossRef
45.
Zurück zum Zitat Chall S, Mati SS, Rakshit S, Bhattacharya SC (2013) Soft-templated room temperature fabrication of nanoscale lanthanum phosphate: synthesis, photoluminescence, and energy transfer behavior. J Phys Chem C 117:25146–25159CrossRef Chall S, Mati SS, Rakshit S, Bhattacharya SC (2013) Soft-templated room temperature fabrication of nanoscale lanthanum phosphate: synthesis, photoluminescence, and energy transfer behavior. J Phys Chem C 117:25146–25159CrossRef
Metadaten
Titel
Fractional order thermoelastic interactions in an infinite porous material due to distributed time-dependent heat sources
verfasst von
M. Bachher
N. Sarkar
A. Lahiri
Publikationsdatum
01.08.2015
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 8/2015
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-015-0152-x

Weitere Artikel der Ausgabe 8/2015

Meccanica 8/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.