Skip to main content
Erschienen in: Meccanica 4/2016

24.07.2015

A novel stochastic-spectral finite element method for analysis of elastodynamic problems in the time domain

verfasst von: P. Zakian, N. Khaji

Erschienen in: Meccanica | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article proposes a stochastically-tuned spectral finite element method (SFEM) which is applied to elastodynamic problems. Stochastic finite element method is an efficient numerical method incorporating randomness for uncertainty quantification of engineering systems. On the other hand, SFEM is an excellent remedy for solving dynamic problems with fine accuracy, which employs Lobatto polynomials leading to reduction of domain discretization and making diagonal mass matrices. The presented method simultaneously collects the advantages of the both methods in order to solve stochastically linear elastodynamic problems with suitable computational efficiency and accuracy. Furthermore, spectral finite element is also proposed for numerical solution of Fredholm integral equation associated with Karhunen–Loève expansion followed by the presented hybrid method which enhances the efficiency of the methodology. Various types of numerical examples are prepared so as to demonstrate advantages of the proposed stochastic SFEM.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kaminski M (2013) The stochastic perturbation method for computational mechanics. Wiley, New YorkCrossRefMATH Kaminski M (2013) The stochastic perturbation method for computational mechanics. Wiley, New YorkCrossRefMATH
2.
Zurück zum Zitat Chang TP, Chang HC (1994) Stochastic dynamic finite element analysis of a nonuniform beam. Int J Solids Struct 31(5):587–597CrossRefMATH Chang TP, Chang HC (1994) Stochastic dynamic finite element analysis of a nonuniform beam. Int J Solids Struct 31(5):587–597CrossRefMATH
3.
Zurück zum Zitat Schuëller GI (1997) A state-of-the-art report on computational stochastic mechanics. Probab Eng Mech 12(4):197–321CrossRef Schuëller GI (1997) A state-of-the-art report on computational stochastic mechanics. Probab Eng Mech 12(4):197–321CrossRef
4.
Zurück zum Zitat Takada T (1990) Weighted integral method in stochastic finite element analysis. Probab Eng Mech 5(3):146–156CrossRef Takada T (1990) Weighted integral method in stochastic finite element analysis. Probab Eng Mech 5(3):146–156CrossRef
5.
Zurück zum Zitat Ghanem RG, Spanos PD (2003) Stochastic finite elements: a spectral approach. Courier Dover Publications, New YorkMATH Ghanem RG, Spanos PD (2003) Stochastic finite elements: a spectral approach. Courier Dover Publications, New YorkMATH
6.
Zurück zum Zitat Deb MK, Babuška IM, Oden JT (2001) Solution of stochastic partial differential equations using Galerkin finite element techniques. Comput Methods Appl Mech Eng 190(48):6359–6372ADSMathSciNetCrossRefMATH Deb MK, Babuška IM, Oden JT (2001) Solution of stochastic partial differential equations using Galerkin finite element techniques. Comput Methods Appl Mech Eng 190(48):6359–6372ADSMathSciNetCrossRefMATH
7.
Zurück zum Zitat Kamiński M (2008) On stochastic finite element method for linear elastostatics by the Taylor expansion. Struct Multidiscip Optim 35(3):213–223CrossRef Kamiński M (2008) On stochastic finite element method for linear elastostatics by the Taylor expansion. Struct Multidiscip Optim 35(3):213–223CrossRef
8.
Zurück zum Zitat Anders M, Hori M (1999) Stochastic finite element method for elasto-plastic body. Int J Numer Meth Eng 46(11):1897–1916CrossRefMATH Anders M, Hori M (1999) Stochastic finite element method for elasto-plastic body. Int J Numer Meth Eng 46(11):1897–1916CrossRefMATH
9.
Zurück zum Zitat Xu XF (2012) Quasi-weak and weak formulation of stochastic finite elements on static and dynamic problems—a unifying framework. Probab Eng Mech 28:103–109CrossRef Xu XF (2012) Quasi-weak and weak formulation of stochastic finite elements on static and dynamic problems—a unifying framework. Probab Eng Mech 28:103–109CrossRef
10.
Zurück zum Zitat Muscolino G, Sofi A (2013) Bounds for the stationary stochastic response of truss structures with uncertain-but-bounded parameters. Mech Syst Signal Process 37(1–2):163–181ADSCrossRef Muscolino G, Sofi A (2013) Bounds for the stationary stochastic response of truss structures with uncertain-but-bounded parameters. Mech Syst Signal Process 37(1–2):163–181ADSCrossRef
11.
Zurück zum Zitat Muscolino G, Sofi A (2012) Stochastic analysis of structures with uncertain-but-bounded parameters via improved interval analysis. Probab Eng Mech 28:152–163CrossRef Muscolino G, Sofi A (2012) Stochastic analysis of structures with uncertain-but-bounded parameters via improved interval analysis. Probab Eng Mech 28:152–163CrossRef
12.
Zurück zum Zitat Gioffrè M, Gusella V (2002) Numerical analysis of structural systems subjected to non-gaussian random fields. Meccanica 37(1–2):115–128CrossRefMATH Gioffrè M, Gusella V (2002) Numerical analysis of structural systems subjected to non-gaussian random fields. Meccanica 37(1–2):115–128CrossRefMATH
13.
Zurück zum Zitat Impollonia N, Muscolino G (2002) Static and dynamic analysis of non-linear uncertain structures. Meccanica 37(1–2):179–192CrossRefMATH Impollonia N, Muscolino G (2002) Static and dynamic analysis of non-linear uncertain structures. Meccanica 37(1–2):179–192CrossRefMATH
14.
Zurück zum Zitat Arnst M, Ghanem R, Phipps E, Red-Horse J (2012) Dimension reduction in stochastic modeling of coupled problems. Int J Numer Meth Eng 92(11):940–968MathSciNetCrossRef Arnst M, Ghanem R, Phipps E, Red-Horse J (2012) Dimension reduction in stochastic modeling of coupled problems. Int J Numer Meth Eng 92(11):940–968MathSciNetCrossRef
15.
Zurück zum Zitat Chevreuil M, Nouy A (2012) Model order reduction based on proper generalized decomposition for the propagation of uncertainties in structural dynamics. Int J Numer Meth Eng 89(2):241–268MathSciNetCrossRefMATH Chevreuil M, Nouy A (2012) Model order reduction based on proper generalized decomposition for the propagation of uncertainties in structural dynamics. Int J Numer Meth Eng 89(2):241–268MathSciNetCrossRefMATH
16.
Zurück zum Zitat Adhikari S (2011) A reduced spectral function approach for the stochastic finite element analysis. Comput Methods Appl Mech Eng 200(21–22):1804–1821ADSMathSciNetCrossRefMATH Adhikari S (2011) A reduced spectral function approach for the stochastic finite element analysis. Comput Methods Appl Mech Eng 200(21–22):1804–1821ADSMathSciNetCrossRefMATH
17.
Zurück zum Zitat Chowdhury R, Adhikari S (2010) High dimensional model representation for stochastic finite element analysis. Appl Math Model 34(12):3917–3932MathSciNetCrossRefMATH Chowdhury R, Adhikari S (2010) High dimensional model representation for stochastic finite element analysis. Appl Math Model 34(12):3917–3932MathSciNetCrossRefMATH
18.
Zurück zum Zitat Xiu D (2010) Numerical methods for stochastic computations: a spectral method approach. Princeton University Press, PrincetonMATH Xiu D (2010) Numerical methods for stochastic computations: a spectral method approach. Princeton University Press, PrincetonMATH
19.
Zurück zum Zitat Stefanou G (2009) The stochastic finite element method: past, present and future. Comput Methods Appl Mech Eng 198(9–12):1031–1051ADSCrossRefMATH Stefanou G (2009) The stochastic finite element method: past, present and future. Comput Methods Appl Mech Eng 198(9–12):1031–1051ADSCrossRefMATH
20.
21.
Zurück zum Zitat Dauksher W, Emery AF (2000) The solution of elastostatic and elastodynamic problems with Chebyshev spectral finite elements. Comput Methods Appl Mech Eng 188(1–3):217–233ADSCrossRefMATH Dauksher W, Emery AF (2000) The solution of elastostatic and elastodynamic problems with Chebyshev spectral finite elements. Comput Methods Appl Mech Eng 188(1–3):217–233ADSCrossRefMATH
22.
Zurück zum Zitat Hennings B, Lammering R, Gabbert U (2013) Numerical simulation of wave propagation using spectral finite elements. CEAS Aeronaut J 4(1):3–10CrossRef Hennings B, Lammering R, Gabbert U (2013) Numerical simulation of wave propagation using spectral finite elements. CEAS Aeronaut J 4(1):3–10CrossRef
23.
Zurück zum Zitat Khaji N, Habibi M, Mirhashemian P (2009) Modeling transient elastodynamic problems using spectral element method. Asian J Civ Eng 10(4):361–380 Khaji N, Habibi M, Mirhashemian P (2009) Modeling transient elastodynamic problems using spectral element method. Asian J Civ Eng 10(4):361–380
24.
Zurück zum Zitat Witkowski W, Rucka M, Chróścielewski J, Wilde K (2012) On some properties of 2D spectral finite elements in problems of wave propagation. Finite Elem Anal Des 55:31–41CrossRef Witkowski W, Rucka M, Chróścielewski J, Wilde K (2012) On some properties of 2D spectral finite elements in problems of wave propagation. Finite Elem Anal Des 55:31–41CrossRef
25.
Zurück zum Zitat Komatitsch D, Tromp J (1999) Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys J Int 139(3):806–822ADSCrossRef Komatitsch D, Tromp J (1999) Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys J Int 139(3):806–822ADSCrossRef
26.
Zurück zum Zitat Shafiei M, Khaji N (2014) Simulation of two-dimensional elastodynamic problems using a new adaptive physics-based method. Meccanica 49(6):1353–1366CrossRefMATH Shafiei M, Khaji N (2014) Simulation of two-dimensional elastodynamic problems using a new adaptive physics-based method. Meccanica 49(6):1353–1366CrossRefMATH
27.
28.
Zurück zum Zitat Kudela P, Krawczuk M, Ostachowicz W (2007) Wave propagation modelling in 1D structures using spectral finite elements. J Sound Vib 300(1–2):88–100ADSCrossRefMATH Kudela P, Krawczuk M, Ostachowicz W (2007) Wave propagation modelling in 1D structures using spectral finite elements. J Sound Vib 300(1–2):88–100ADSCrossRefMATH
29.
Zurück zum Zitat Adler RJ, Taylor JE (2007) Random fields and geometry, vol 115. Springer, BerlinMATH Adler RJ, Taylor JE (2007) Random fields and geometry, vol 115. Springer, BerlinMATH
30.
Zurück zum Zitat Bobrowski A (2005) Functional analysis for probability and stochastic processes: an introduction. Cambridge University Press, CambridgeCrossRefMATH Bobrowski A (2005) Functional analysis for probability and stochastic processes: an introduction. Cambridge University Press, CambridgeCrossRefMATH
31.
Zurück zum Zitat Abramowitz M, Stegun IA (1964) Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Dover Publications, New YorkMATH Abramowitz M, Stegun IA (1964) Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Dover Publications, New YorkMATH
32.
Zurück zum Zitat Ziari S, Ezzati R, Abbasbandy S (2012) Numerical solution of linear fuzzy Fredholm integral equations of the second kind using fuzzy Haar wavelet. In: Greco S, Bouchon-Meunier B, Coletti G, Fedrizzi M, Matarazzo B, Yager R (eds) Advances in computational intelligence, vol 299., Communications in computer and information scienceSpringer, Berlin, pp 79–89CrossRef Ziari S, Ezzati R, Abbasbandy S (2012) Numerical solution of linear fuzzy Fredholm integral equations of the second kind using fuzzy Haar wavelet. In: Greco S, Bouchon-Meunier B, Coletti G, Fedrizzi M, Matarazzo B, Yager R (eds) Advances in computational intelligence, vol 299., Communications in computer and information scienceSpringer, Berlin, pp 79–89CrossRef
33.
Zurück zum Zitat Ikebe Y (1972) The Galerkin method for the numerical solution of Fredholm integral equations of the second kind. SIAM Review 14(3):465–491MathSciNetCrossRefMATH Ikebe Y (1972) The Galerkin method for the numerical solution of Fredholm integral equations of the second kind. SIAM Review 14(3):465–491MathSciNetCrossRefMATH
34.
Zurück zum Zitat Bathe KJ (1996) Finite element procedures. Prentice Hall Bathe KJ (1996) Finite element procedures. Prentice Hall
35.
Zurück zum Zitat Saleh MM, El-Kalla IL, Ehab MM (2007) Stochastic finite element technique for stochastic one-dimension time-dependent differential equations with random coefficients. Differ Equ Nonlinear Mech 2007:1–16. doi:10.1155/2007/48527 Saleh MM, El-Kalla IL, Ehab MM (2007) Stochastic finite element technique for stochastic one-dimension time-dependent differential equations with random coefficients. Differ Equ Nonlinear Mech 2007:1–16. doi:10.​1155/​2007/​48527
36.
Zurück zum Zitat Kamiński M (2010) Generalized stochastic perturbation technique in engineering computations. Math Comput Model 51(3–4):272–285MathSciNetCrossRefMATH Kamiński M (2010) Generalized stochastic perturbation technique in engineering computations. Math Comput Model 51(3–4):272–285MathSciNetCrossRefMATH
37.
Zurück zum Zitat Ghanem R (1999) Higher-order sensitivity of heat conduction problems to random data using the spectral stochastic finite element method. J Heat Transf 121(2):290–299CrossRef Ghanem R (1999) Higher-order sensitivity of heat conduction problems to random data using the spectral stochastic finite element method. J Heat Transf 121(2):290–299CrossRef
38.
Zurück zum Zitat Bruch JC, Zyvoloski G (1974) Transient two-dimensional heat conduction problems solved by the finite element method. Int J Numer Meth Eng 8(3):481–494CrossRefMATH Bruch JC, Zyvoloski G (1974) Transient two-dimensional heat conduction problems solved by the finite element method. Int J Numer Meth Eng 8(3):481–494CrossRefMATH
39.
Zurück zum Zitat Khodakarami MI, Khaji N (2011) Analysis of elastostatic problems using a semi-analytical method with diagonal coefficient matrices. Eng Anal Bound Elem 35(12):1288–1296MathSciNetCrossRefMATH Khodakarami MI, Khaji N (2011) Analysis of elastostatic problems using a semi-analytical method with diagonal coefficient matrices. Eng Anal Bound Elem 35(12):1288–1296MathSciNetCrossRefMATH
Metadaten
Titel
A novel stochastic-spectral finite element method for analysis of elastodynamic problems in the time domain
verfasst von
P. Zakian
N. Khaji
Publikationsdatum
24.07.2015
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 4/2016
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-015-0242-9

Weitere Artikel der Ausgabe 4/2016

Meccanica 4/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.