Skip to main content

11.12.2019

Destabilization characteristics of three dimensional Rayleigh–Taylor mechanism on a cylindrical interface

verfasst von: M. Vadivukkarasan, Mahesh V. Panchagnula

Erschienen in: Meccanica

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The stability of a cylindrical interface separating two incompressible, inviscid and immiscible fluids under the action of radial motion is studied. Linear stability analysis is employed to understand the destabilization characteristics of the two fluid interface. Three-dimensional as well as two-dimensional (axisymmetric and azimuthal) disturbances are separately considered in the presence of surface tension. A dispersion relation governing this problem is taken from literature and analyzed. The relevant dimensionless parameters governing this study are Bond number, radial Weber number and density ratio. This dispersion relation permits the consideration of two different scenarios: (1) density of the inner fluid being greater than the outer fluid and (2) density of the inner fluid being lesser than the outer fluid. It is found out that the surface tension restricts and aids the destabilization for the former and latter case, respectively. It is also observed that the interface is unstable when even at a constant radial velocity. This is contrary to our common understanding of Rayleigh–Taylor instability where acceleration is required. Three destabilization modes are identified namely Taylor (axial) mode, flute (azimuthal) mode and helical (three-dimensional) mode for a range of parameters. It is found that three-dimensional modes are more susceptible to destabilization than the two-dimensional modes when the radial Weber number is close to zero. Regime maps are created in the Bond number, radial Weber number and density ratio space to establish the regimes where different modes occur. For a given density ratio, the destabilization starts from one mode to another two-dimensional disturbance through three-dimensional disturbances. The second and utmost finding of this study reveals that radial Weber number alone (albeit the Bond number) is sufficient to destabilize a cylindrical interface.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Esser PD, Paul DD, Abdel-Khalik SI (1981) Stability of the lithium ‘waterfall’ first wall protection concept for inertial confinement fusion reactors. Nucl Technol Fus 1:285–294ADS Esser PD, Paul DD, Abdel-Khalik SI (1981) Stability of the lithium ‘waterfall’ first wall protection concept for inertial confinement fusion reactors. Nucl Technol Fus 1:285–294ADS
2.
Zurück zum Zitat Abarzhi SI, Gorobets A, Sreenivasan KR (2005) Rayleigh–Taylor turbulent mixing of immiscible, miscible and stratified fluids. Phys Fluids 17(8):081705ADSMathSciNetMATH Abarzhi SI, Gorobets A, Sreenivasan KR (2005) Rayleigh–Taylor turbulent mixing of immiscible, miscible and stratified fluids. Phys Fluids 17(8):081705ADSMathSciNetMATH
3.
Zurück zum Zitat Swisher NC, Kuranz CC, Arnett D, Hurricane O, Remington BA, Robey HF, Abarzhi SI (2015) Rayleigh–Taylor mixing in supernova experiments. Phys Plasmas 22(10):102707ADS Swisher NC, Kuranz CC, Arnett D, Hurricane O, Remington BA, Robey HF, Abarzhi SI (2015) Rayleigh–Taylor mixing in supernova experiments. Phys Plasmas 22(10):102707ADS
4.
Zurück zum Zitat Sreenivasan KR, Abarzhi SI (2003) Acceleration and turbulence in Rayleigh–Taylor mixing. Philos Trans R Soc Lond A 371:2013 Sreenivasan KR, Abarzhi SI (2003) Acceleration and turbulence in Rayleigh–Taylor mixing. Philos Trans R Soc Lond A 371:2013
6.
Zurück zum Zitat Gordillo JM (2008) Axisymmetric bubble collapse in a quiescent liquid pool. I. Theory and numerical simulations. Phys Fluids 20(11):112103ADSMATH Gordillo JM (2008) Axisymmetric bubble collapse in a quiescent liquid pool. I. Theory and numerical simulations. Phys Fluids 20(11):112103ADSMATH
8.
Zurück zum Zitat Vledouts A, Quinard J, Vandenberghe N, Villermaux E (2016) Explosive fragmentation of liquid shells. J Fluid Mech 788:246–273 2ADSMathSciNetMATH Vledouts A, Quinard J, Vandenberghe N, Villermaux E (2016) Explosive fragmentation of liquid shells. J Fluid Mech 788:246–273 2ADSMathSciNetMATH
9.
Zurück zum Zitat Krechetnikov R (2009) Rayleigh–Taylor and Richtmyer–Meshkov instabilities of flat and curved interfaces. J Fluid Mech 625:387–410ADSMathSciNetMATH Krechetnikov R (2009) Rayleigh–Taylor and Richtmyer–Meshkov instabilities of flat and curved interfaces. J Fluid Mech 625:387–410ADSMathSciNetMATH
10.
Zurück zum Zitat Krechetnikov R (2010) Stability of liquid sheet edges. Phys Fluids 22(9):092101ADS Krechetnikov R (2010) Stability of liquid sheet edges. Phys Fluids 22(9):092101ADS
11.
Zurück zum Zitat Mikaelian KO (1982) Rayleigh–Taylor instabilities in stratified fluids. Phys Rev A 26:2140–2158ADSMathSciNet Mikaelian KO (1982) Rayleigh–Taylor instabilities in stratified fluids. Phys Rev A 26:2140–2158ADSMathSciNet
12.
Zurück zum Zitat Mikaelian KO (1983) Time evolution of density perturbations in accelerating stratified fluids. Phys Rev A 28:1637–1646ADS Mikaelian KO (1983) Time evolution of density perturbations in accelerating stratified fluids. Phys Rev A 28:1637–1646ADS
13.
Zurück zum Zitat Mikaelian KO (1990) Rayleigh–Taylor and Richtmyer–Meshkov instabilities in multilayer fluids with surface tension. Phys Rev A 42:7211–7225ADSMathSciNet Mikaelian KO (1990) Rayleigh–Taylor and Richtmyer–Meshkov instabilities in multilayer fluids with surface tension. Phys Rev A 42:7211–7225ADSMathSciNet
14.
Zurück zum Zitat Mikaelian KO (1995) Rayleigh–Taylor and Richtmyer–Meshkov instabilities in finite thickness fluid layers. Phys Fluids 7(4):888–890ADSMATH Mikaelian KO (1995) Rayleigh–Taylor and Richtmyer–Meshkov instabilities in finite thickness fluid layers. Phys Fluids 7(4):888–890ADSMATH
15.
Zurück zum Zitat Mikaelian KO (1996) Rayleigh–Taylor instability in finite-thickness fluids with viscosity and surface tension. Phys Rev E 54:3676–3680ADSMathSciNet Mikaelian KO (1996) Rayleigh–Taylor instability in finite-thickness fluids with viscosity and surface tension. Phys Rev E 54:3676–3680ADSMathSciNet
16.
Zurück zum Zitat Wang LF, Xue C, Ye WH, Li YJ (2009) Destabilizing effect of density gradient on the Kelvin–Helmholtz instability. Phys Plasmas 16(11):112104ADS Wang LF, Xue C, Ye WH, Li YJ (2009) Destabilizing effect of density gradient on the Kelvin–Helmholtz instability. Phys Plasmas 16(11):112104ADS
17.
Zurück zum Zitat Wang LF, Ye WH, Li YJ (2010) Combined effect of the density and velocity gradients in the combination of Kelvin–Helmholtz and Rayleigh–Taylor instabilities. Phys Plasmas 17(4):042103ADS Wang LF, Ye WH, Li YJ (2010) Combined effect of the density and velocity gradients in the combination of Kelvin–Helmholtz and Rayleigh–Taylor instabilities. Phys Plasmas 17(4):042103ADS
19.
Zurück zum Zitat Taylor GI (1950) The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc R Soc Lond A 201:192–196ADSMathSciNetMATH Taylor GI (1950) The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc R Soc Lond A 201:192–196ADSMathSciNetMATH
20.
Zurück zum Zitat Chen XM, Schrock VE, Peterson PF (1997) Rayleigh–Taylor instability of cylindrical jets with radial motion. Nucl Eng Des 177:121–129 Chen XM, Schrock VE, Peterson PF (1997) Rayleigh–Taylor instability of cylindrical jets with radial motion. Nucl Eng Des 177:121–129
21.
Zurück zum Zitat Mikaelian Karnig O (2005) Rayleigh–Taylor and Richtmyer–Meshkov instabilities and mixing in stratified cylindrical shells. Phys Fluids 17(9):094105ADSMathSciNetMATH Mikaelian Karnig O (2005) Rayleigh–Taylor and Richtmyer–Meshkov instabilities and mixing in stratified cylindrical shells. Phys Fluids 17(9):094105ADSMathSciNetMATH
22.
Zurück zum Zitat Velikovich AL, Schmit PF (2015) Bell–Plesset effects in Rayleigh–Taylor instability of finite-thickness spherical and cylindrical shells. Phys Plasmas 22(12):122711ADS Velikovich AL, Schmit PF (2015) Bell–Plesset effects in Rayleigh–Taylor instability of finite-thickness spherical and cylindrical shells. Phys Plasmas 22(12):122711ADS
23.
Zurück zum Zitat Weis MR, Zhang P, Lau YY, Schmit PF, Peterson KJ, Hess M, Gilgenbach RM (2015) Coupling of sausage, kink, and magneto-Rayleigh–Taylor instabilities in a cylindrical liner. Phys Plasmas 22(3):032706ADS Weis MR, Zhang P, Lau YY, Schmit PF, Peterson KJ, Hess M, Gilgenbach RM (2015) Coupling of sausage, kink, and magneto-Rayleigh–Taylor instabilities in a cylindrical liner. Phys Plasmas 22(3):032706ADS
24.
25.
Zurück zum Zitat Mikaelian KO (1990) Rayleigh–Taylor and Richtmyer–Meshkov instabilities and mixing in stratified spherical shells. Phys Rev A 42:3400–3420ADSMathSciNet Mikaelian KO (1990) Rayleigh–Taylor and Richtmyer–Meshkov instabilities and mixing in stratified spherical shells. Phys Rev A 42:3400–3420ADSMathSciNet
26.
Zurück zum Zitat Bell GI (1951) Taylor instability on cylinders and spheres in the small amplitude approximation. Los Alamos scientific laboratory report no. LA-1321 Bell GI (1951) Taylor instability on cylinders and spheres in the small amplitude approximation. Los Alamos scientific laboratory report no. LA-1321
27.
Zurück zum Zitat Prosperetti A (2012) Linear oscillations of constrained drops, bubbles, and plane liquid surfaces. Phys Fluids 24(3):032109ADS Prosperetti A (2012) Linear oscillations of constrained drops, bubbles, and plane liquid surfaces. Phys Fluids 24(3):032109ADS
28.
Zurück zum Zitat Vadivukkarasan M, Panchagnula MV (2016) Helical modes in combined Rayleigh–Taylor and Kelvin–Helmholtz instability of a cylindrical interface. Int J Spray Combust Dyn 8:219–234 Vadivukkarasan M, Panchagnula MV (2016) Helical modes in combined Rayleigh–Taylor and Kelvin–Helmholtz instability of a cylindrical interface. Int J Spray Combust Dyn 8:219–234
29.
Zurück zum Zitat Vadivukkarasan M, Panchagnula MV (2017) Combined Rayleigh–Taylor and Kelvin–Helmholtz instabilities on an annular liquid sheet. J Fluid Mech 812:152–177ADSMathSciNetMATH Vadivukkarasan M, Panchagnula MV (2017) Combined Rayleigh–Taylor and Kelvin–Helmholtz instabilities on an annular liquid sheet. J Fluid Mech 812:152–177ADSMathSciNetMATH
30.
Zurück zum Zitat Santangelo PJ, Sojka PE (1995) A holographic investigation of the near-nozzle structure of an effervescent atomizer-produced spray. At Sprays 5(2):137–155 Santangelo PJ, Sojka PE (1995) A holographic investigation of the near-nozzle structure of an effervescent atomizer-produced spray. At Sprays 5(2):137–155
31.
Zurück zum Zitat Sharp DH (1984) An overview of Rayleigh–Taylor instability. Physica D Nonlinear Phenom 12:3–18ADSMATH Sharp DH (1984) An overview of Rayleigh–Taylor instability. Physica D Nonlinear Phenom 12:3–18ADSMATH
32.
Zurück zum Zitat Kull HJ (1991) Theory of the Rayleigh–Taylor instability. Rev Sec Phys Lett 206:197–325 Kull HJ (1991) Theory of the Rayleigh–Taylor instability. Rev Sec Phys Lett 206:197–325
34.
Zurück zum Zitat Chen CF, Kirchner RP (1978) Stability of time-dependent rotational Couette flow part 2. Stability analysis. J Fluid Mech 48:365–384 2ADSMATH Chen CF, Kirchner RP (1978) Stability of time-dependent rotational Couette flow part 2. Stability analysis. J Fluid Mech 48:365–384 2ADSMATH
35.
Zurück zum Zitat Mehdizadeh NZ, Chandra S, Mostaghimi J (2004) Formation of fingers around the edges of a drop hitting a metal plate with high velocity. J Fluid Mech 510:353–373 7ADSMATH Mehdizadeh NZ, Chandra S, Mostaghimi J (2004) Formation of fingers around the edges of a drop hitting a metal plate with high velocity. J Fluid Mech 510:353–373 7ADSMATH
36.
Zurück zum Zitat Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Dover Publications, MineolaMATH Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Dover Publications, MineolaMATH
37.
Zurück zum Zitat Harper EY, Grube GW, Chang ID (1972) On the breakup of accelerating liquid drops. J Fluid Mech 52:565–591 4ADSMATH Harper EY, Grube GW, Chang ID (1972) On the breakup of accelerating liquid drops. J Fluid Mech 52:565–591 4ADSMATH
38.
Zurück zum Zitat Epstein R (2004) On the Bell–Plesset effects: the effects of uniform compression and geometrical convergence on the classical Rayleigh–Taylor instability. Phys Plasmas 11(11):5114–5124ADS Epstein R (2004) On the Bell–Plesset effects: the effects of uniform compression and geometrical convergence on the classical Rayleigh–Taylor instability. Phys Plasmas 11(11):5114–5124ADS
39.
Zurück zum Zitat Yu H, Livescu D (2008) Rayleigh–Taylor instability in cylindrical geometry with compressible fluids. Phys Fluids 20(10):104103ADSMATH Yu H, Livescu D (2008) Rayleigh–Taylor instability in cylindrical geometry with compressible fluids. Phys Fluids 20(10):104103ADSMATH
40.
41.
Zurück zum Zitat Huneault J, Plant D, Higgins AJ (2019) Rotational stabilisation of the Rayleigh–Taylor instability at the inner surface of an imploding liquid shell. J Fluid Mech 873:531–567ADSMathSciNetMATH Huneault J, Plant D, Higgins AJ (2019) Rotational stabilisation of the Rayleigh–Taylor instability at the inner surface of an imploding liquid shell. J Fluid Mech 873:531–567ADSMathSciNetMATH
42.
Zurück zum Zitat Biancofiore L, Gallaire F, Laure P, Hachem E (2014) Direct numerical simulations of two-phase immiscible wakes. Fluid Dyn Res 46(4):041409ADSMathSciNet Biancofiore L, Gallaire F, Laure P, Hachem E (2014) Direct numerical simulations of two-phase immiscible wakes. Fluid Dyn Res 46(4):041409ADSMathSciNet
43.
Zurück zum Zitat Biancofiore L, Heifetz E, Hoepffner J, Gallaire F (2017) Understanding the destabilizing role for surface tension in planar shear flows in terms of wave interaction. Phys Rev Fluids 2:103901ADS Biancofiore L, Heifetz E, Hoepffner J, Gallaire F (2017) Understanding the destabilizing role for surface tension in planar shear flows in terms of wave interaction. Phys Rev Fluids 2:103901ADS
44.
Zurück zum Zitat Biancofiore L, Gallaire F, Heifetz E (2015) Interaction between counterpropagating Rossby waves and capillary waves in planar shear flows. Phys Fluids 27(4):20 Biancofiore L, Gallaire F, Heifetz E (2015) Interaction between counterpropagating Rossby waves and capillary waves in planar shear flows. Phys Fluids 27(4):20
45.
Zurück zum Zitat Wang LF, Wu JF, Ye WH, Zhang WY, He XT (2013) Weakly nonlinear incompressible Rayleigh–Taylor instability growth at cylindrically convergent interfaces. Phys Plasmas 20(4):042708ADS Wang LF, Wu JF, Ye WH, Zhang WY, He XT (2013) Weakly nonlinear incompressible Rayleigh–Taylor instability growth at cylindrically convergent interfaces. Phys Plasmas 20(4):042708ADS
46.
Zurück zum Zitat Wang LF, Wu JF, Guo HY, Ye WH, Jie Liu, Zhang WY, He XT (2015) Weakly nonlinear Bell–Plesset effects for a uniformly converging cylinder. Phys Plasmas 22(8):082702ADS Wang LF, Wu JF, Guo HY, Ye WH, Jie Liu, Zhang WY, He XT (2015) Weakly nonlinear Bell–Plesset effects for a uniformly converging cylinder. Phys Plasmas 22(8):082702ADS
Metadaten
Titel
Destabilization characteristics of three dimensional Rayleigh–Taylor mechanism on a cylindrical interface
verfasst von
M. Vadivukkarasan
Mahesh V. Panchagnula
Publikationsdatum
11.12.2019
Verlag
Springer Netherlands
Erschienen in
Meccanica
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-019-01086-0

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.