Skip to main content
Erschienen in: Mechanics of Composite Materials 2/2019

14.05.2019

Deformation Features and Models of [±45]2s Cross-Ply Fiber-Reinforced Plastics in Tension

verfasst von: V. N. Paimushin, R. A. Kayumov, S. A. Kholmogorov

Erschienen in: Mechanics of Composite Materials | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Series of experiments on [±45]2s cross-ply carbon-fiber-reinforced plastic specimens were carried out in tension with various loading programs. In analyzing stress–strains relations, the material was considered homogeneous. The total axial strain is presented as the sum of instantaneous residual (irreversible), nonlinear reversible, irreversible creep, and reversible creep strains. To separate the last two components, the hypothesis that their rates at different instants of time are different is used. Together with a generalized Kachanov hypothesis, this allowed us first to obtain equations for increments of only the viscoelastic strain. Further, equations in which only the viscoplastic strain is unknown are written, and only then the secant elastic modulus is determined. Questions of the choice of relations for describing strain components and the problem on identification of parameters of the relations are considered. Experimental data and results of their processing are presented, and they testify to the acceptability of the assumptions used and the efficiency of the approaches proposed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yu. N. Rabotnov, Creep of Structural Members [in Russian], M., Nauka, (1966). Yu. N. Rabotnov, Creep of Structural Members [in Russian], M., Nauka, (1966).
2.
Zurück zum Zitat Yu. N. Rabotnov, Elements of Hereditary Mechanics of Solid Bodies [in Russian], M., Nauka, (1977). Yu. N. Rabotnov, Elements of Hereditary Mechanics of Solid Bodies [in Russian], M., Nauka, (1977).
3.
Zurück zum Zitat R. A. Rzhanitsyn, Theory of Creep[in Russian], M., Gosstrojizdat (1968). R. A. Rzhanitsyn, Theory of Creep[in Russian], M., Gosstrojizdat (1968).
4.
Zurück zum Zitat M. A. Koltunov, Creep and Relaxation [in Russian], M., Vysshaya Shkola (1976). M. A. Koltunov, Creep and Relaxation [in Russian], M., Vysshaya Shkola (1976).
5.
Zurück zum Zitat Yu. S. Urzhumtsev and R. D. Maximov, Prediction of Deformation of Polymer Materials [in Russian], Riga, Zinatne, (1975). Yu. S. Urzhumtsev and R. D. Maximov, Prediction of Deformation of Polymer Materials [in Russian], Riga, Zinatne, (1975).
6.
Zurück zum Zitat Mechanics of Composite Materials. Composite Materials, Vol. 2, ed. by G. P. Sendeckyj, Academic Press, N. Y, London (1974). Mechanics of Composite Materials. Composite Materials, Vol. 2, ed. by G. P. Sendeckyj, Academic Press, N. Y, London (1974).
7.
Zurück zum Zitat N. N. Malinin, Applied Theory of Plasticity and Creep, Studies, Textbook for University students [in Russian], 2nd ed., M., Mashinostroenie (1975). N. N. Malinin, Applied Theory of Plasticity and Creep, Studies, Textbook for University students [in Russian], 2nd ed., M., Mashinostroenie (1975).
8.
Zurück zum Zitat L. M. Kachanov, Theory of Creep [in Russian], M., Gosizdat (1960). L. M. Kachanov, Theory of Creep [in Russian], M., Gosizdat (1960).
9.
Zurück zum Zitat A. A. Adamov and V. P. Matvienko, Methods of Applied Viscoelasticity [in Russian], M., Mashinostroenie (2003). A. A. Adamov and V. P. Matvienko, Methods of Applied Viscoelasticity [in Russian], M., Mashinostroenie (2003).
10.
Zurück zum Zitat A. Ya. Malkin, Rheology: Concepts, Methods, Applications [in Russian], St. Petersburg (2007). A. Ya. Malkin, Rheology: Concepts, Methods, Applications [in Russian], St. Petersburg (2007).
11.
Zurück zum Zitat V. E. Yudin, V. P. Volodin, and G. N. Gubanova, “Features of the viscoelastic behavior of carbon plastics on the basis of the polymer matrix: a model study and calculation,” Mekh. Kompoz. Mater., 33, No. 5, 656-669 (1997). V. E. Yudin, V. P. Volodin, and G. N. Gubanova, “Features of the viscoelastic behavior of carbon plastics on the basis of the polymer matrix: a model study and calculation,” Mekh. Kompoz. Mater., 33, No. 5, 656-669 (1997).
12.
Zurück zum Zitat R. A. Kayumov and I. G. Teregulov, “Structure of governing relations for hereditary-elastic materials reinforced with rigid fibers,” Prikl.. Mekh. Tekchn. Fiz., 3, 120-128 (2005). R. A. Kayumov and I. G. Teregulov, “Structure of governing relations for hereditary-elastic materials reinforced with rigid fibers,” Prikl.. Mekh. Tekchn. Fiz., 3, 120-128 (2005).
13.
Zurück zum Zitat K. Giannadakis and J. Varna, “Analysis of nonlinear shear stress-strain response of unidirectional GF/EP composite,” Composites: Part A, 62, 67-76 (2014).CrossRef K. Giannadakis and J. Varna, “Analysis of nonlinear shear stress-strain response of unidirectional GF/EP composite,” Composites: Part A, 62, 67-76 (2014).CrossRef
14.
Zurück zum Zitat K. Giannadakis, P. Mannberg, R. Joffe, and J. Varna, “The sources of inelastic behavior of glass fibre/vinylester non-crimp fabric [±45] s laminates,” J. Reinf. Plast. Compos., 30, No. 12, 1015-1028. (2011).CrossRef K. Giannadakis, P. Mannberg, R. Joffe, and J. Varna, “The sources of inelastic behavior of glass fibre/vinylester non-crimp fabric [±45] s laminates,” J. Reinf. Plast. Compos., 30, No. 12, 1015-1028. (2011).CrossRef
15.
Zurück zum Zitat L.-O. Nordin and J. Varna, “Methodology for parameter identification in nonlinear viscoelastic material model,” 9, No. (4), 259-280 (2005). L.-O. Nordin and J. Varna, “Methodology for parameter identification in nonlinear viscoelastic material model,” 9, No. (4), 259-280 (2005).
16.
Zurück zum Zitat S. Ogihara and H. Nakatani, “Modeling of mechanical response in CFPR angle-ply laminates,” Proc. of the 19th Int. Conf. on Composite Materials (ICCM19), Montreal, Canada, 7268-7276 (2013). S. Ogihara and H. Nakatani, “Modeling of mechanical response in CFPR angle-ply laminates,” Proc. of the 19th Int. Conf. on Composite Materials (ICCM19), Montreal, Canada, 7268-7276 (2013).
17.
Zurück zum Zitat A. M. Dumansky and L. P. Tairova, “The prediction of viscoelastic properties of layered composites on example of cross-ply carbon reinforced plastic,” World Congr. on Eng., 2-4 July, 2007. Vol. II, London, UK, 1346-1351 (2007). A. M. Dumansky and L. P. Tairova, “The prediction of viscoelastic properties of layered composites on example of cross-ply carbon reinforced plastic,” World Congr. on Eng., 2-4 July, 2007. Vol. II, London, UK, 1346-1351 (2007).
18.
Zurück zum Zitat J. Berthe, M. Brieu, and E. Deletombe, “Thermo-viscoelastic modeling of organic matrix composite behavior – Application to T700GC/M21,” Mech. Mater., 81, 18-24(2015).CrossRef J. Berthe, M. Brieu, and E. Deletombe, “Thermo-viscoelastic modeling of organic matrix composite behavior – Application to T700GC/M21,” Mech. Mater., 81, 18-24(2015).CrossRef
19.
Zurück zum Zitat M. Mondali, V. Monfared, and A. Abedian, “Nonlinear creep modeling of short-fiber composites using Hermite polynomials, hyperbolic trigonometric functions and power series,” Comptes Rendus Mecanique, 341, 592-604 (2013).CrossRef M. Mondali, V. Monfared, and A. Abedian, “Nonlinear creep modeling of short-fiber composites using Hermite polynomials, hyperbolic trigonometric functions and power series,” Comptes Rendus Mecanique, 341, 592-604 (2013).CrossRef
20.
Zurück zum Zitat V. P. Golub, Ya. V. Pavlyuk, and P. V. Fernati, “Determining parameters of fractional-exponential heredity kernels of nonlinear viscoelastic materials,” Int. Appl. Mech., 53, No. 4, 419-433 (2017).CrossRef V. P. Golub, Ya. V. Pavlyuk, and P. V. Fernati, “Determining parameters of fractional-exponential heredity kernels of nonlinear viscoelastic materials,” Int. Appl. Mech., 53, No. 4, 419-433 (2017).CrossRef
21.
Zurück zum Zitat V. N. Paimushin, S. A. Kholmogorov, and I. B. Badriev, “Theoretical and experimental investigations of the formation mechanisms of residual deformations of fibrous layered structure composites,” MATEC Web of Conf., 2017. Vol. 129, 02042 (Int. Conf. on Modern Trends in Manufacturing Technologies and Equipment, ICMTMTE 2017, Sevastopol, Russian Federation; 11-17 Sept., (2017). V. N. Paimushin, S. A. Kholmogorov, and I. B. Badriev, “Theoretical and experimental investigations of the formation mechanisms of residual deformations of fibrous layered structure composites,” MATEC Web of Conf., 2017. Vol. 129, 02042 (Int. Conf. on Modern Trends in Manufacturing Technologies and Equipment, ICMTMTE 2017, Sevastopol, Russian Federation; 11-17 Sept., (2017).
22.
Zurück zum Zitat V. N. Paimushin and S.A. Kholmogorov, “Residual strains in obliquely reinforced fibrous composites: experiments on cyclic tension,” Proc. X All Russian Conf. On Mechanics of Deformable Solid Body (18-22 Sept., 2017, Samara, Russia). Vol. 2. Samara Sam. GTU, 136-140 (2017). V. N. Paimushin and S.A. Kholmogorov, “Residual strains in obliquely reinforced fibrous composites: experiments on cyclic tension,” Proc. X All Russian Conf. On Mechanics of Deformable Solid Body (18-22 Sept., 2017, Samara, Russia). Vol. 2. Samara Sam. GTU, 136-140 (2017).
23.
Zurück zum Zitat V. N. Paimushin, S. A. Kholmogorov, and R. A. Kayumov, “Experimental studies of the mechanisms of formation of residual strains of fibrous composites of a layered structure under cyclic loading,” Uch. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki, 159, No. 40, 395-428 (2017). V. N. Paimushin, S. A. Kholmogorov, and R. A. Kayumov, “Experimental studies of the mechanisms of formation of residual strains of fibrous composites of a layered structure under cyclic loading,” Uch. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki, 159, No. 40, 395-428 (2017).
24.
Zurück zum Zitat V. N. Paimushin and S. A. Kholmogorov, “Physical-mechanical properties of a fiber-reinforced composite based on an ELUR-P carbon tape and XT-118 binder,” Mech. Compos. Mater., 54, No. 1, 2-12 (2018).CrossRef V. N. Paimushin and S. A. Kholmogorov, “Physical-mechanical properties of a fiber-reinforced composite based on an ELUR-P carbon tape and XT-118 binder,” Mech. Compos. Mater., 54, No. 1, 2-12 (2018).CrossRef
25.
Zurück zum Zitat K. B. Pettersson, J. M. Neumeister, K. E. Gamstedt, and H. Öberg, “Stiffness reduction, creep, and irreversible strains in fiber composites tested in repeated interlaminar shear,” Compos. Struct., 76, Nos. 1-2, 151-161 (2006).CrossRef K. B. Pettersson, J. M. Neumeister, K. E. Gamstedt, and H. Öberg, “Stiffness reduction, creep, and irreversible strains in fiber composites tested in repeated interlaminar shear,” Compos. Struct., 76, Nos. 1-2, 151-161 (2006).CrossRef
26.
Zurück zum Zitat W. Van Paepegem, I. De Baere, and J. Degrieck, “Modelling the nonlinear shear stress-strain response of glass fibre-reinforced composites. Part I: Experimental results,” Compos. Sci. Technol., 66, 1455-1464 (2006).CrossRef W. Van Paepegem, I. De Baere, and J. Degrieck, “Modelling the nonlinear shear stress-strain response of glass fibre-reinforced composites. Part I: Experimental results,” Compos. Sci. Technol., 66, 1455-1464 (2006).CrossRef
27.
Zurück zum Zitat V. V. Vasil’jev, A. A. Dudchenko, and A. N. Elpatyevskii, “On the deformation features of orthotropic fiberglass in tension,” Polym. Mekh., 1, 144-146 (1970). V. V. Vasil’jev, A. A. Dudchenko, and A. N. Elpatyevskii, “On the deformation features of orthotropic fiberglass in tension,” Polym. Mekh., 1, 144-146 (1970).
28.
Zurück zum Zitat I. F. Obraztsov, V. V. Vasil’jev, and V. A. Bunakov, Optimal Reinforcement of Shells of Rotation from Composite Materials [in Russian], M., Mashinostroenie (1977). I. F. Obraztsov, V. V. Vasil’jev, and V. A. Bunakov, Optimal Reinforcement of Shells of Rotation from Composite Materials [in Russian], M., Mashinostroenie (1977).
29.
Zurück zum Zitat N. A. Alfutov, P. A. Zinovjev, and B. G. Popov Calculation of Multilayered Plates and Shells from Composite Materials [in Russian], M., Mashinostoenie (1984). N. A. Alfutov, P. A. Zinovjev, and B. G. Popov Calculation of Multilayered Plates and Shells from Composite Materials [in Russian], M., Mashinostoenie (1984).
30.
Zurück zum Zitat V. N. Paimushin, N. V. Polyakova, S. A. Kholmogorov, and M. A. Shishov, “Multi-scale modes of buckling of reinforcing elements in fibrous composites,” Izv. Vuz. Matematika, 9, 89-95 (2017). V. N. Paimushin, N. V. Polyakova, S. A. Kholmogorov, and M. A. Shishov, “Multi-scale modes of buckling of reinforcing elements in fibrous composites,” Izv. Vuz. Matematika, 9, 89-95 (2017).
31.
Zurück zum Zitat V. N. Paimushin, N. V. Polyakova, S. A. Kholmogorov, and M. A. Shishov, “Buckling modes of structural elements of off-axis fiber-reinforced plastics,” Mech. Compos. Mater., 54, No. 2, 133-144 (2018).CrossRef V. N. Paimushin, N. V. Polyakova, S. A. Kholmogorov, and M. A. Shishov, “Buckling modes of structural elements of off-axis fiber-reinforced plastics,” Mech. Compos. Mater., 54, No. 2, 133-144 (2018).CrossRef
32.
Zurück zum Zitat I. F. Obraztsov and V. V. Vasiliev, “Nonlinear phenomenological models of deformation of fibrous composite materials,” Mekh. Kompoz. Mater., 3, 390-393 (1982). I. F. Obraztsov and V. V. Vasiliev, “Nonlinear phenomenological models of deformation of fibrous composite materials,” Mekh. Kompoz. Mater., 3, 390-393 (1982).
33.
Zurück zum Zitat R. A. Kayumov, “Structure of nonlinear elastic relationships for the highly anisotropic layer of a nonthin shell,” Mech. Compos. Mater., 35, No. 5, 409-419 (1999).CrossRef R. A. Kayumov, “Structure of nonlinear elastic relationships for the highly anisotropic layer of a nonthin shell,” Mech. Compos. Mater., 35, No. 5, 409-419 (1999).CrossRef
34.
Zurück zum Zitat N. Ch. Arutyunyan, “On the theory of creep in heterogeneous hereditary aging media,” Dokl. AN SSSR, 229, No. 3, 569-571 (1976). N. Ch. Arutyunyan, “On the theory of creep in heterogeneous hereditary aging media,” Dokl. AN SSSR, 229, No. 3, 569-571 (1976).
35.
Zurück zum Zitat O. L. Kravchenko and V. E. Vilderman, “Modeling the inelastic deformation of angle-ply reinforced laminates,” Matem. Model. Syst. Proc., 5, 49-55 (1997). O. L. Kravchenko and V. E. Vilderman, “Modeling the inelastic deformation of angle-ply reinforced laminates,” Matem. Model. Syst. Proc., 5, 49-55 (1997).
36.
Zurück zum Zitat R. M. Christensen, Mechanics of Composite Materials, New York–Chichester–Brisbane–Toronto, John Wiley & Sons (1979). R. M. Christensen, Mechanics of Composite Materials, New York–Chichester–Brisbane–Toronto, John Wiley & Sons (1979).
37.
Zurück zum Zitat G. C. Papanicolaou, S. P. Zaoutsos, and E. A. Kontou, “Fiber orientation dependence of continuous carbon/epoxy composites nonlinear viscoelastic behavior,” Compos. Sci. Technol., 64, No.16, 2535-2545 (2004).CrossRef G. C. Papanicolaou, S. P. Zaoutsos, and E. A. Kontou, “Fiber orientation dependence of continuous carbon/epoxy composites nonlinear viscoelastic behavior,” Compos. Sci. Technol., 64, No.16, 2535-2545 (2004).CrossRef
38.
Zurück zum Zitat E. Kontou and A. Kallimanis, “Formulation of the viscoplastic behavior of epoxy-glass fiber composites,” J. Compos. Mater., 39, No.8, 711-721 (2005).CrossRef E. Kontou and A. Kallimanis, “Formulation of the viscoplastic behavior of epoxy-glass fiber composites,” J. Compos. Mater., 39, No.8, 711-721 (2005).CrossRef
39.
Zurück zum Zitat R. A. Kayumov, “Extended problem of identifying the mechanical characteristics of materials according to results of structure testing,” Izv. RAN Mekh. Tverd. Tela, No. 2, 94-105 (2004). R. A. Kayumov, “Extended problem of identifying the mechanical characteristics of materials according to results of structure testing,” Izv. RAN Mekh. Tverd. Tela, No. 2, 94-105 (2004).
40.
Zurück zum Zitat D. Grop, Identification Methods of Systems [Russsian translation], M., Mir (1979). D. Grop, Identification Methods of Systems [Russsian translation], M., Mir (1979).
41.
Zurück zum Zitat L. M. Kachanov, “About the time of creep rupture,” Izv. AN SSSR, Otd. Tekhn. Nauk, 8, 26-31 (1958). L. M. Kachanov, “About the time of creep rupture,” Izv. AN SSSR, Otd. Tekhn. Nauk, 8, 26-31 (1958).
42.
Zurück zum Zitat A. N. Polilov, Etudes on Mechanics of Composites [in Russian], M., Fizmatlit (2015). A. N. Polilov, Etudes on Mechanics of Composites [in Russian], M., Fizmatlit (2015).
Metadaten
Titel
Deformation Features and Models of [±45]2s Cross-Ply Fiber-Reinforced Plastics in Tension
verfasst von
V. N. Paimushin
R. A. Kayumov
S. A. Kholmogorov
Publikationsdatum
14.05.2019
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 2/2019
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-019-09800-5

Weitere Artikel der Ausgabe 2/2019

Mechanics of Composite Materials 2/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.