Skip to main content
Erschienen in: Natural Computing 4/2011

01.12.2011

Greedy versus social: resource-competing oscillator network as a model of amoeba-based neurocomputer

verfasst von: Masashi Aono, Yoshito Hirata, Masahiko Hara, Kazuyuki Aihara

Erschienen in: Natural Computing | Ausgabe 4/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A single-celled amoeboid organism, the true slime mold Physarum polycephalum, exhibits rich spatiotemporal oscillatory behavior and sophisticated computational capabilities. The authors previously created a biocomputer that incorporates the organism as a computing substrate to search for solutions to combinatorial optimization problems. With the assistance of optical feedback to implement a recurrent neural network model, the organism changes its shape by alternately growing and withdrawing its photosensitive branches so that its body area can be maximized and the risk of being illuminated can be minimized. In this way, the organism succeeded in finding the optimal solution to the four-city traveling salesman problem with a high probability. However, it remains unclear how the organism collects, stores, and compares information on light stimuli using the oscillatory dynamics. To study these points, we formulate an ordinary differential equation model of the amoeba-based neurocomputer, considering the organism as a network of oscillators that compete for a fixed amount of intracellular resource. The model, called the “Resource-Competing Oscillator Network (RCON) model,” reproduces well the organism’s experimentally observed behavior, as it generates a number of spatiotemporal oscillation modes by keeping the total sum of the resource constant. Designing the feedback rule properly, the RCON model comes to face a problem of optimizing the allocation of the resource to its nodes. In the problem-solving process, “greedy” nodes having the highest competitiveness are supposed to take more resource out of other nodes. However, the resource allocation pattern attained by the greedy nodes cannot always achieve a “socially optimal” state in terms of the public cost. We prepare four test problems including a tricky one in which the greedy pattern becomes “socially unfavorable” and investigate how the RCON model copes with these problems. Comparing problem-solving performances of the oscillation modes, we show that there exist some modes often attain socially favorable patterns without being trapped in the greedy one.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Adamatzky A (2008) Developing proximity graphs by Physarum Polycephalum: does the plasmodium follow Toussaint hierarchy? Parallel Process Lett 19:105–127MathSciNetCrossRef Adamatzky A (2008) Developing proximity graphs by Physarum Polycephalum: does the plasmodium follow Toussaint hierarchy? Parallel Process Lett 19:105–127MathSciNetCrossRef
Zurück zum Zitat Aono M, Gunji Y-P (2003) Beyond input-output computings: error-driven emergence with parallel non-distributed slime mold computer. BioSystems 71:257–287CrossRef Aono M, Gunji Y-P (2003) Beyond input-output computings: error-driven emergence with parallel non-distributed slime mold computer. BioSystems 71:257–287CrossRef
Zurück zum Zitat Aono M, Hara M (2007) Amoeba-based nonequilibrium neurocomputer utilizing fluctuations and instability. In: Aki SG et al (eds) UC 2007, LNCS, vol 4618. Springer-Verlag, Berlin, pp 41–54 Aono M, Hara M (2007) Amoeba-based nonequilibrium neurocomputer utilizing fluctuations and instability. In: Aki SG et al (eds) UC 2007, LNCS, vol 4618. Springer-Verlag, Berlin, pp 41–54
Zurück zum Zitat Aono M, Hara M (2008) Spontaneous deadlock breaking on amoeba-based neurocomputer. BioSystems 91:83–93CrossRef Aono M, Hara M (2008) Spontaneous deadlock breaking on amoeba-based neurocomputer. BioSystems 91:83–93CrossRef
Zurück zum Zitat Aono M, Hara M, Aihara K (2007) Amoeba-based neurocomputing with chaotic dynamics. Commun ACM 50(9):69–72CrossRef Aono M, Hara M, Aihara K (2007) Amoeba-based neurocomputing with chaotic dynamics. Commun ACM 50(9):69–72CrossRef
Zurück zum Zitat Aono M, Hirata Y, Hara M, Aihara K (2009a) Amoeba-based chaotic neurocomputing: combinatorial optimization by coupled biological oscillators. New Gener Comput 27:129–157MATHCrossRef Aono M, Hirata Y, Hara M, Aihara K (2009a) Amoeba-based chaotic neurocomputing: combinatorial optimization by coupled biological oscillators. New Gener Comput 27:129–157MATHCrossRef
Zurück zum Zitat Aono M, Hirata Y, Hara M, Aihara K (2009b) Resource-competing oscillator network as a model of amoeba-based neurocomputer. In: Calude C et al (eds) UC 2009, LNCS, vol 5715. Springer-Verlag, Berlin, pp 56–69 Aono M, Hirata Y, Hara M, Aihara K (2009b) Resource-competing oscillator network as a model of amoeba-based neurocomputer. In: Calude C et al (eds) UC 2009, LNCS, vol 5715. Springer-Verlag, Berlin, pp 56–69
Zurück zum Zitat Aono M, Hara M, Aihara K, Munakata T (2010a) Amoeba-based emergent computing: combinatorial optimization and autonomous meta-problem solving. Int J Unconv Comput 6:89–108 Aono M, Hara M, Aihara K, Munakata T (2010a) Amoeba-based emergent computing: combinatorial optimization and autonomous meta-problem solving. Int J Unconv Comput 6:89–108
Zurück zum Zitat Aono M, Hirata Y, Hara M, Aihara K (2010b) A model of amoeba-based neurocomputer. J Comput Chem Japan 9(3):143–156CrossRef Aono M, Hirata Y, Hara M, Aihara K (2010b) A model of amoeba-based neurocomputer. J Comput Chem Japan 9(3):143–156CrossRef
Zurück zum Zitat Arbib MA (ed) (2003) The handbook of brain theory and neural networks, 2nd edn. The MIT Press, CambridgeMATH Arbib MA (ed) (2003) The handbook of brain theory and neural networks, 2nd edn. The MIT Press, CambridgeMATH
Zurück zum Zitat Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W. H. Freeman and co, New YorkMATH Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W. H. Freeman and co, New YorkMATH
Zurück zum Zitat Golubitsky M, Stewart I (2002) The symmetry perspective. Birkhauser, Basel Golubitsky M, Stewart I (2002) The symmetry perspective. Birkhauser, Basel
Zurück zum Zitat Hirata Y, Aono M, Hara M, Aihara K (2010) Spontaneous mode switching in coupled oscillators competing for constant amounts of resources. Chaos 20:013117CrossRef Hirata Y, Aono M, Hara M, Aihara K (2010) Spontaneous mode switching in coupled oscillators competing for constant amounts of resources. Chaos 20:013117CrossRef
Zurück zum Zitat Hopfield JJ, Tank DW (1986) Computing with neural circuits: a model. Science 233:625–633CrossRef Hopfield JJ, Tank DW (1986) Computing with neural circuits: a model. Science 233:625–633CrossRef
Zurück zum Zitat Jones J (2009) Approximating the behaviours of Physarum polycephalum for the construction and minimisation of synthetic transport networks. In: Calude C et al (eds) Unconventional computation 2009, UC 2009, LNCS, vol 5715. Springer-Verlag, Berlin, pp 191–208 Jones J (2009) Approximating the behaviours of Physarum polycephalum for the construction and minimisation of synthetic transport networks. In: Calude C et al (eds) Unconventional computation 2009, UC 2009, LNCS, vol 5715. Springer-Verlag, Berlin, pp 191–208
Zurück zum Zitat Kessler D (1982) Plasmodial structure and motility. In: Aldrich HC, Daniel JW (eds) Cell biology of physarum and didymium, vol 1. Academic Press Inc, New York, pp 145–208 Kessler D (1982) Plasmodial structure and motility. In: Aldrich HC, Daniel JW (eds) Cell biology of physarum and didymium, vol 1. Academic Press Inc, New York, pp 145–208
Zurück zum Zitat Kim S-J, Aono M, Hara M (2010a) Tug-of-war model for two-bandit problem: nonlocally correlated parallel exploration via resource conservation. BioSystems 101:29–36CrossRef Kim S-J, Aono M, Hara M (2010a) Tug-of-war model for two-bandit problem: nonlocally correlated parallel exploration via resource conservation. BioSystems 101:29–36CrossRef
Zurück zum Zitat Kim S-J, Aono M, Hara M (2010b) Tug-of-war model for multi-armed Bandit problem. In: Calude C et al (eds) UC 2010, LNCS, vol 6079. Springer-Verlag, Berlin, pp 69–80 Kim S-J, Aono M, Hara M (2010b) Tug-of-war model for multi-armed Bandit problem. In: Calude C et al (eds) UC 2010, LNCS, vol 6079. Springer-Verlag, Berlin, pp 69–80
Zurück zum Zitat Kuznetsov YA (2004) Elements of applied bifurcation theory. Springer-Verlag, New York, USAMATH Kuznetsov YA (2004) Elements of applied bifurcation theory. Springer-Verlag, New York, USAMATH
Zurück zum Zitat Nakagaki T, Yamada H, Toth A (2000) Maze-solving by an amoeboid organism. Nature 407:470CrossRef Nakagaki T, Yamada H, Toth A (2000) Maze-solving by an amoeboid organism. Nature 407:470CrossRef
Zurück zum Zitat Nakagaki T, Iima M, Ueda T, Nishiura Y, Saigusa T, Tero A, Kobayashi R, Showalter K (2007) Minimum-risk path finding by an adaptive amoebal network. Phys Rev Lett 99:068104CrossRef Nakagaki T, Iima M, Ueda T, Nishiura Y, Saigusa T, Tero A, Kobayashi R, Showalter K (2007) Minimum-risk path finding by an adaptive amoebal network. Phys Rev Lett 99:068104CrossRef
Zurück zum Zitat Nisan N, Roughgarden T, Tardos E, Vazirani VV (eds) (2007) Algorithmic game theory. Cambridge University Press, CambridgeMATH Nisan N, Roughgarden T, Tardos E, Vazirani VV (eds) (2007) Algorithmic game theory. Cambridge University Press, CambridgeMATH
Zurück zum Zitat Roughgarden T (2005) Selfish routing and the price of anarchy. The MIT Press, Cambridge Roughgarden T (2005) Selfish routing and the price of anarchy. The MIT Press, Cambridge
Zurück zum Zitat Saigusa T, Tero A, Nakagaki T, Kuramoto Y (2008) Amoebae anticipate periodic events. Phys Rev Lett 100:018101CrossRef Saigusa T, Tero A, Nakagaki T, Kuramoto Y (2008) Amoebae anticipate periodic events. Phys Rev Lett 100:018101CrossRef
Zurück zum Zitat Takamatsu A (2006) Spontaneous switching among multiple spatio-temporal patterns in three-oscillator systems constructed with oscillatory cells of true slime mold. Physica D 223:180–188CrossRef Takamatsu A (2006) Spontaneous switching among multiple spatio-temporal patterns in three-oscillator systems constructed with oscillatory cells of true slime mold. Physica D 223:180–188CrossRef
Zurück zum Zitat Takamatsu A, Fujii T, Endo I (2000) Time delay effect in a living coupled oscillator system with the plasmodium of Physarum polycephalum. Phys Rev Lett 85:2026–2029CrossRef Takamatsu A, Fujii T, Endo I (2000) Time delay effect in a living coupled oscillator system with the plasmodium of Physarum polycephalum. Phys Rev Lett 85:2026–2029CrossRef
Zurück zum Zitat Takamatsu A, Tanaka R, Yamada H, Nakagaki T, Fujii T, Endo I (2001) Spatiotemporal symmetry in rings of coupled biological oscillators of Physarum plasmodial slime mold. Phys Rev Lett 87:078102CrossRef Takamatsu A, Tanaka R, Yamada H, Nakagaki T, Fujii T, Endo I (2001) Spatiotemporal symmetry in rings of coupled biological oscillators of Physarum plasmodial slime mold. Phys Rev Lett 87:078102CrossRef
Zurück zum Zitat Tero A, Kobayashi R, Nakagaki T (2006) Physarum solver: a biologically inspired method of road-network navigation. Physica A 363:115–119CrossRef Tero A, Kobayashi R, Nakagaki T (2006) Physarum solver: a biologically inspired method of road-network navigation. Physica A 363:115–119CrossRef
Zurück zum Zitat Tero A, Takagi S, Saigusa T, Ito K, Bebber DP, Fricker MD, Yumiki K, Kobayashi R, Nakagaki T (2010) Rules for biologically inspired adaptive network design. Science 327(5964):439–442MathSciNetCrossRef Tero A, Takagi S, Saigusa T, Ito K, Bebber DP, Fricker MD, Yumiki K, Kobayashi R, Nakagaki T (2010) Rules for biologically inspired adaptive network design. Science 327(5964):439–442MathSciNetCrossRef
Zurück zum Zitat Tsuda S, Zauner KP, Gunji Y-P (2007) Robot control with biological cells. BioSystems 87:215–223CrossRef Tsuda S, Zauner KP, Gunji Y-P (2007) Robot control with biological cells. BioSystems 87:215–223CrossRef
Metadaten
Titel
Greedy versus social: resource-competing oscillator network as a model of amoeba-based neurocomputer
verfasst von
Masashi Aono
Yoshito Hirata
Masahiko Hara
Kazuyuki Aihara
Publikationsdatum
01.12.2011
Verlag
Springer Netherlands
Erschienen in
Natural Computing / Ausgabe 4/2011
Print ISSN: 1567-7818
Elektronische ISSN: 1572-9796
DOI
https://doi.org/10.1007/s11047-010-9224-y

Weitere Artikel der Ausgabe 4/2011

Natural Computing 4/2011 Zur Ausgabe

Premium Partner