Skip to main content
Erschienen in: Natural Computing 2/2020

03.01.2020

CRN++: Molecular programming language

verfasst von: Marko Vasić, David Soloveichik, Sarfraz Khurshid

Erschienen in: Natural Computing | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Synthetic biology is a rapidly emerging research area, with expected wide-ranging impact in biology, nanofabrication, and medicine. A key technical challenge lies in embedding computation in molecular contexts where electronic micro-controllers cannot be inserted. This necessitates effective representation of computation using molecular components. While previous work established the Turing-completeness of chemical reactions, defining representations that are faithful, efficient, and practical remains challenging . This paper introduces CRN++, a new language for programming deterministic (mass-action) chemical kinetics to perform computation. We present its syntax and semantics, and build a compiler translating CRN++ programs into chemical reactions, thereby laying the foundation of a comprehensive framework for molecular programming. Our language addresses the key challenge of embedding familiar imperative constructs into a set of chemical reactions happening simultaneously and manipulating real-valued concentrations. Although some deviation from ideal output value cannot be avoided, we develop methods to minimize the error, and implement error analysis tools. We demonstrate the feasibility of using CRN++on a suite of well-known algorithms for discrete and real-valued computation. CRN++ can be easily extended to support new commands or chemical reaction implementations, and thus provides a foundation for developing more robust and practical molecular programs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Although certain pathological CRNs can drive concentrations to infinity in finite time (e.g., \(2A \rightarrow 3A\)), and thereby drive certain other species to 0 in finite time (e.g., with an additional \(B + A \rightarrow A\) ), these cases cannot be implemented with any reasonable chemistry.
 
2
A problematic feature of this module is that the concentration of H increases without bound if [A] < [B]. Although this does not affect the correctness of the computation, it is an interesting open question whether there is another truncated subtraction module that satisfies composability and exhibits exponential convergence but has bounded concentrations for any input regime.
 
3
This convergence happens irrespective of the initial concentrations of the flag species \(X_{gtY}\) and \(X_{ltY}\) (as long as they sum to 1), so they do not have to be reset before the mapping.
 
Literatur
Zurück zum Zitat Baccouche A, Montagne K, Padirac A, Fujii T, Rondelez Y (2014) Dynamic DNA-toolbox reaction circuits: a walkthrough. Methods 67(2):234–249CrossRef Baccouche A, Montagne K, Padirac A, Fujii T, Rondelez Y (2014) Dynamic DNA-toolbox reaction circuits: a walkthrough. Methods 67(2):234–249CrossRef
Zurück zum Zitat Bournez O, Graça DS, Pouly A (2017) Polynomial time corresponds to solutions of polynomial ordinary differential equations of polynomial length. J ACM 64(6):38MathSciNetCrossRef Bournez O, Graça DS, Pouly A (2017) Polynomial time corresponds to solutions of polynomial ordinary differential equations of polynomial length. J ACM 64(6):38MathSciNetCrossRef
Zurück zum Zitat Buisman HJ, ten Eikelder HMM, Hilbers PAJ, Liekens AML (2009) Computing algebraic functions with biochemical reaction networks. Artif Life 15:5–19CrossRef Buisman HJ, ten Eikelder HMM, Hilbers PAJ, Liekens AML (2009) Computing algebraic functions with biochemical reaction networks. Artif Life 15:5–19CrossRef
Zurück zum Zitat Cardelli L, Csikász-Nagy A (2012) The cell cycle switch computes approximate majority. Sci Rep 2:656CrossRef Cardelli L, Csikász-Nagy A (2012) The cell cycle switch computes approximate majority. Sci Rep 2:656CrossRef
Zurück zum Zitat Chen YJ, Dalchau N, Srinivas N, Phillips A, Cardelli L, Soloveichik D, Seelig G (2013) Programmable chemical controllers made from DNA. Nat Nanotechnol 8(10):755CrossRef Chen YJ, Dalchau N, Srinivas N, Phillips A, Cardelli L, Soloveichik D, Seelig G (2013) Programmable chemical controllers made from DNA. Nat Nanotechnol 8(10):755CrossRef
Zurück zum Zitat Fages F, Le Guludec G, Bournez O, Pouly A (2017) Strong turing completeness of continuous chemical reaction networks and compilation of mixed analog-digital programs. In: International conference on computational methods in systems biology, pp 108–127CrossRef Fages F, Le Guludec G, Bournez O, Pouly A (2017) Strong turing completeness of continuous chemical reaction networks and compilation of mixed analog-digital programs. In: International conference on computational methods in systems biology, pp 108–127CrossRef
Zurück zum Zitat Ge L, Zhong Z, Wen D, You X, Zhang C (2016) A formal combinational logic synthesis with chemical reaction networks. IEEE Trans Mol Biol Multi-Scale Commun 3(1):33–47CrossRef Ge L, Zhong Z, Wen D, You X, Zhang C (2016) A formal combinational logic synthesis with chemical reaction networks. IEEE Trans Mol Biol Multi-Scale Commun 3(1):33–47CrossRef
Zurück zum Zitat Hjelmfelt A, Weinberger ED, Ross J (1991) Chemical implementation of neural networks and Turing machines. Proc Nat Acad Sci 88(24):10983–10987CrossRef Hjelmfelt A, Weinberger ED, Ross J (1991) Chemical implementation of neural networks and Turing machines. Proc Nat Acad Sci 88(24):10983–10987CrossRef
Zurück zum Zitat Hjelmfelt A, Weinberger ED, Ross J (1992) Chemical implementation of finite-state machines. Proc Nat Acad Sci 89(1):383–387CrossRef Hjelmfelt A, Weinberger ED, Ross J (1992) Chemical implementation of finite-state machines. Proc Nat Acad Sci 89(1):383–387CrossRef
Zurück zum Zitat Huang DA, Jiang JHR, Huang RY, Cheng CY (2012) Compiling program control flows into biochemical reactions. In: Proceedings of the international conference on computer-aided design, pp 361–368 Huang DA, Jiang JHR, Huang RY, Cheng CY (2012) Compiling program control flows into biochemical reactions. In: Proceedings of the international conference on computer-aided design, pp 361–368
Zurück zum Zitat Jiang H, Riedel M, Parhi K (2011) Synchronous sequential computation with molecular reactions. In: 2011 48th ACM/EDAC/IEEE design automation conference (DAC), pp 836–841 Jiang H, Riedel M, Parhi K (2011) Synchronous sequential computation with molecular reactions. In: 2011 48th ACM/EDAC/IEEE design automation conference (DAC), pp 836–841
Zurück zum Zitat Lachmann M, Sella G (1995) The computationally complete ant colony: Global coordination in a system with no hierarchy. In: European conference on artificial life. Springer, pp 784–800 Lachmann M, Sella G (1995) The computationally complete ant colony: Global coordination in a system with no hierarchy. In: European conference on artificial life. Springer, pp 784–800
Zurück zum Zitat Magnasco MO (1997) Chemical kinetics is Turing universal. Phys Rev Lett 78(6):1190CrossRef Magnasco MO (1997) Chemical kinetics is Turing universal. Phys Rev Lett 78(6):1190CrossRef
Zurück zum Zitat Perron E, Vasudevan D, Vojnovic M (2009) Using three states for binary consensus on complete graphs. In: IEEE INFOCOM 2009. IEEE, pp 2527–2535 Perron E, Vasudevan D, Vojnovic M (2009) Using three states for binary consensus on complete graphs. In: IEEE INFOCOM 2009. IEEE, pp 2527–2535
Zurück zum Zitat Salehi SA, Liu X, Riedel MD, Parhi KK (2018) Computing mathematical functions using DNA via fractional coding. Sci Rep 8(1):8312CrossRef Salehi SA, Liu X, Riedel MD, Parhi KK (2018) Computing mathematical functions using DNA via fractional coding. Sci Rep 8(1):8312CrossRef
Zurück zum Zitat Salehi SA, Parhi KK, Riedel MD (2017) Chemical reaction networks for computing polynomials. ACS Synth Biol 6(1):76–83CrossRef Salehi SA, Parhi KK, Riedel MD (2017) Chemical reaction networks for computing polynomials. ACS Synth Biol 6(1):76–83CrossRef
Zurück zum Zitat Senum P, Riedel M (2011) Rate-independent constructs for chemical computation. PLoS ONE 6:e21414CrossRef Senum P, Riedel M (2011) Rate-independent constructs for chemical computation. PLoS ONE 6:e21414CrossRef
Zurück zum Zitat Soloveichik D, Seelig G, Winfree E (2010) DNA as a universal substrate for chemical kinetics. Proc Nat Acad Sci 107(12):5393–5398CrossRef Soloveichik D, Seelig G, Winfree E (2010) DNA as a universal substrate for chemical kinetics. Proc Nat Acad Sci 107(12):5393–5398CrossRef
Metadaten
Titel
CRN++: Molecular programming language
verfasst von
Marko Vasić
David Soloveichik
Sarfraz Khurshid
Publikationsdatum
03.01.2020
Verlag
Springer Netherlands
Erschienen in
Natural Computing / Ausgabe 2/2020
Print ISSN: 1567-7818
Elektronische ISSN: 1572-9796
DOI
https://doi.org/10.1007/s11047-019-09775-1

Weitere Artikel der Ausgabe 2/2020

Natural Computing 2/2020 Zur Ausgabe

Premium Partner