Skip to main content
Erschienen in: Quantum Information Processing 8/2014

01.08.2014

Dynamic quantum secret sharing protocol based on GHZ state

verfasst von: Ci-Hong Liao, Chun-Wei Yang, Tzonelish Hwang

Erschienen in: Quantum Information Processing | Ausgabe 8/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work proposes a new dynamic quantum secret sharing (DQSS) protocol using the measurement property of Greenberger–Horne–Zeilinger state and the controlled-NOT gate. In the proposed DQSS protocol, an agent can obtain a shadow of the secret key by simply performing a measurement on single photons. In comparison with the existing DQSS protocols, it provides better qubit efficiency and has an easy way to add a new agent. The proposed protocol is also free from the eavesdropping attack, the collusion attack, and can have an honesty check on a revoked agent.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Jiang, M., Huang, X., Zhou, L., Zhou, Y., Zeng, J.: An efficient scheme for multi-party quantum state sharing via non-maximally entangled states. Chin. Sci. Bull. 57(10), 1089–1094 (2012)CrossRef Jiang, M., Huang, X., Zhou, L., Zhou, Y., Zeng, J.: An efficient scheme for multi-party quantum state sharing via non-maximally entangled states. Chin. Sci. Bull. 57(10), 1089–1094 (2012)CrossRef
3.
Zurück zum Zitat Massoud, H., Elham, F.: A novel and efficient multiparty quantum secret sharing scheme using entangled states. Sci. China Phys. 55(10), 1828–1831 (2012)CrossRef Massoud, H., Elham, F.: A novel and efficient multiparty quantum secret sharing scheme using entangled states. Sci. China Phys. 55(10), 1828–1831 (2012)CrossRef
4.
Zurück zum Zitat Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69(5), 052307 (2004)CrossRefADS Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69(5), 052307 (2004)CrossRefADS
5.
Zurück zum Zitat Deng, F.G., Long, G.L., Zhou, H.Y.: An efficient quantum secret sharing scheme with Einstein–Podolsky–Rosen pairs. Phys. Lett. A 340(1–4), 43–50 (2005)CrossRefADSMATH Deng, F.G., Long, G.L., Zhou, H.Y.: An efficient quantum secret sharing scheme with Einstein–Podolsky–Rosen pairs. Phys. Lett. A 340(1–4), 43–50 (2005)CrossRefADSMATH
6.
Zurück zum Zitat Deng, F.G., Li, X.H., Zhou, H.Y.: Efficient high-capacity quantum secret sharing with two-photon entanglement. Phys. Lett. A 372(12), 1957–1962 (2008)MathSciNetCrossRefADSMATH Deng, F.G., Li, X.H., Zhou, H.Y.: Efficient high-capacity quantum secret sharing with two-photon entanglement. Phys. Lett. A 372(12), 1957–1962 (2008)MathSciNetCrossRefADSMATH
7.
Zurück zum Zitat Shi, R.H., Huang, L.S., Yang, W., Zhong, H.: Multiparty quantum secret sharing with Bell states and Bell measurements. Opt. Commun. 283(11), 2476–2480 (2010)CrossRefADS Shi, R.H., Huang, L.S., Yang, W., Zhong, H.: Multiparty quantum secret sharing with Bell states and Bell measurements. Opt. Commun. 283(11), 2476–2480 (2010)CrossRefADS
8.
Zurück zum Zitat Sun, Y., Wen, Q.Y., Gao, F., Chen, X.B., Zhu, F.C.: Multiparty quantum secret sharing based on Bell measurement. Opt. Commun. 282(17), 3647–3651 (2009)CrossRefADS Sun, Y., Wen, Q.Y., Gao, F., Chen, X.B., Zhu, F.C.: Multiparty quantum secret sharing based on Bell measurement. Opt. Commun. 282(17), 3647–3651 (2009)CrossRefADS
9.
Zurück zum Zitat Zhou, P., Li, X.H., Liang, Y.J., Deng, F.G., Zhou, H.Y.: Multiparty quantum secret sharing with pure entangled states and decoy photons. Phys. A 381, 164–169 (2007)MathSciNetCrossRef Zhou, P., Li, X.H., Liang, Y.J., Deng, F.G., Zhou, H.Y.: Multiparty quantum secret sharing with pure entangled states and decoy photons. Phys. A 381, 164–169 (2007)MathSciNetCrossRef
10.
Zurück zum Zitat Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72(2), 022303 (2005)MathSciNetCrossRefADS Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72(2), 022303 (2005)MathSciNetCrossRefADS
11.
Zurück zum Zitat Li, Y.M., Zhang, K.S., Peng, K.C.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324(5–6), 420–424 (2004)MathSciNetCrossRefADSMATH Li, Y.M., Zhang, K.S., Peng, K.C.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324(5–6), 420–424 (2004)MathSciNetCrossRefADSMATH
12.
Zurück zum Zitat Zhang, Z.J., Yang, J., Man, Z.X., Li, Y.: Multiparty secret sharing of quantum information using and identifying Bell states. Eur. Phys. J. D 33(1), 133–136 (2005)CrossRefADS Zhang, Z.J., Yang, J., Man, Z.X., Li, Y.: Multiparty secret sharing of quantum information using and identifying Bell states. Eur. Phys. J. D 33(1), 133–136 (2005)CrossRefADS
14.
Zurück zum Zitat Hsu, L.Y., Li, C.M.: Quantum secret sharing using product states. Phys. Rev. A 71(2), 022321 (2005)CrossRefADS Hsu, L.Y., Li, C.M.: Quantum secret sharing using product states. Phys. Rev. A 71(2), 022321 (2005)CrossRefADS
17.
Zurück zum Zitat Han, L.F., Liu, Y.M., Liu, J., Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication using single photons. Opt. Commun. 281(9), 2690–2694 (2008)CrossRefADS Han, L.F., Liu, Y.M., Liu, J., Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication using single photons. Opt. Commun. 281(9), 2690–2694 (2008)CrossRefADS
19.
Zurück zum Zitat Zhang, Z.J., Man, Z.X.: Reply to “Comment on ’Multiparty quantum secret sharing of classical messages based on entanglement swapping”’. Phys. Rev. A 76(3), 036302 (2007)MathSciNetCrossRefADS Zhang, Z.J., Man, Z.X.: Reply to “Comment on ’Multiparty quantum secret sharing of classical messages based on entanglement swapping”’. Phys. Rev. A 76(3), 036302 (2007)MathSciNetCrossRefADS
20.
Zurück zum Zitat Man, Z.X., Xia, Y.J., Zhang, Z.J.: Many-agent controlled multi-player quantum secret sharing scheme. Int. J. Mod. Phys. C 18(2), 177–185 (2007)MathSciNetCrossRefADSMATH Man, Z.X., Xia, Y.J., Zhang, Z.J.: Many-agent controlled multi-player quantum secret sharing scheme. Int. J. Mod. Phys. C 18(2), 177–185 (2007)MathSciNetCrossRefADSMATH
21.
Zurück zum Zitat Wang, X., Liu, Y.M., Han, L.F., Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication with high-dimensional quantum superdense coding. Int. J. Quantum Inf. 6(6), 1155–1163 (2008)CrossRefMATH Wang, X., Liu, Y.M., Han, L.F., Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication with high-dimensional quantum superdense coding. Int. J. Quantum Inf. 6(6), 1155–1163 (2008)CrossRefMATH
22.
Zurück zum Zitat Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication. Phys. Lett. A 342(1–2), 60–66 (2005) Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication. Phys. Lett. A 342(1–2), 60–66 (2005)
23.
Zurück zum Zitat Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of key using practical faint laser pulses. Chin. Phys. Lett. 22(7), 1588–1591 (2005)CrossRefADS Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of key using practical faint laser pulses. Chin. Phys. Lett. 22(7), 1588–1591 (2005)CrossRefADS
24.
Zurück zum Zitat Han, L.F., Liu, Y.M., Zhang, Z.J.: Multiparty quantum secret sharing of classical message using cavity quantum electrodynamic system. Chin. Phys. Lett. 23(8), 1988–1991 (2006)CrossRefADS Han, L.F., Liu, Y.M., Zhang, Z.J.: Multiparty quantum secret sharing of classical message using cavity quantum electrodynamic system. Chin. Phys. Lett. 23(8), 1988–1991 (2006)CrossRefADS
25.
Zurück zum Zitat Zhang, Z.J.: Multiparty secret sharing of quantum information via cavity QED. Opt. Commun. 261(1), 199–202 (2006)CrossRefADS Zhang, Z.J.: Multiparty secret sharing of quantum information via cavity QED. Opt. Commun. 261(1), 199–202 (2006)CrossRefADS
26.
Zurück zum Zitat Zhang, Z.J.: Robust multiparty quantum secret key sharing over two collective-noise channels. Phys. A 361(1), 233–238 (2006)CrossRefADS Zhang, Z.J.: Robust multiparty quantum secret key sharing over two collective-noise channels. Phys. A 361(1), 233–238 (2006)CrossRefADS
27.
Zurück zum Zitat Han, L.F., Liu, Y.M., Yuan, H., Zhang, Z.J.: Efficient multiparty-to-multiparty quantum secret sharing via continuous variable operations. Chin. Phys. Lett. 24(12), 3312–3315 (2007)CrossRefADS Han, L.F., Liu, Y.M., Yuan, H., Zhang, Z.J.: Efficient multiparty-to-multiparty quantum secret sharing via continuous variable operations. Chin. Phys. Lett. 24(12), 3312–3315 (2007)CrossRefADS
28.
Zurück zum Zitat Han, L.F., Liu, Y.M., Shi, S.H., Zhang, Z.J.: Improving the security of a quantum secret sharing protocol between multiparty and multiparty without entanglement. Phys. Lett. A 361(1–2), 24–28 (2007)MathSciNetCrossRefADSMATH Han, L.F., Liu, Y.M., Shi, S.H., Zhang, Z.J.: Improving the security of a quantum secret sharing protocol between multiparty and multiparty without entanglement. Phys. Lett. A 361(1–2), 24–28 (2007)MathSciNetCrossRefADSMATH
29.
Zurück zum Zitat Zhang, Z.J., Liu, Y.M., Fang, M., Wang, D.: Multiparty quantum secret sharing scheme of classical messages by swapping qudit-state entanglement. Int. J. Mod. Phys. C 18(12), 1885–1901 (2007)CrossRefADSMATH Zhang, Z.J., Liu, Y.M., Fang, M., Wang, D.: Multiparty quantum secret sharing scheme of classical messages by swapping qudit-state entanglement. Int. J. Mod. Phys. C 18(12), 1885–1901 (2007)CrossRefADSMATH
30.
Zurück zum Zitat Zhang, Z.J., Gao, G., Wang, X., Han, L.F., Shi, S.H.: Multiparty quantum secret sharing based on the improved Bostrom–Felbinger protocol. Opt. Commun. 269(2), 418–422 (2007)CrossRefADS Zhang, Z.J., Gao, G., Wang, X., Han, L.F., Shi, S.H.: Multiparty quantum secret sharing based on the improved Bostrom–Felbinger protocol. Opt. Commun. 269(2), 418–422 (2007)CrossRefADS
31.
Zurück zum Zitat Chen, J.H., Lee, K.C., Hwang, T.: The enhancement of Zhou et al.’s quantum secret sharing protocol. Int. J. Mod. Phys. C 20(10), 1531–1535 (2009)CrossRefADSMATH Chen, J.H., Lee, K.C., Hwang, T.: The enhancement of Zhou et al.’s quantum secret sharing protocol. Int. J. Mod. Phys. C 20(10), 1531–1535 (2009)CrossRefADSMATH
32.
Zurück zum Zitat Hsieh, C.R., Tasi, C.W., Hwang, T.: Quantum secret sharing using GHZ-like state. Commun. Theor. Phys. 54(6), 1019–1022 (2010)CrossRefMATH Hsieh, C.R., Tasi, C.W., Hwang, T.: Quantum secret sharing using GHZ-like state. Commun. Theor. Phys. 54(6), 1019–1022 (2010)CrossRefMATH
33.
Zurück zum Zitat Hwang, C.-C., Hwang, T., Li, C.-M.: Enhancement of GAO’s multiparty quantum secret sharing. Commun. Theor. Phys 56(1), 79–82 (2011)CrossRefADSMATH Hwang, C.-C., Hwang, T., Li, C.-M.: Enhancement of GAO’s multiparty quantum secret sharing. Commun. Theor. Phys 56(1), 79–82 (2011)CrossRefADSMATH
34.
Zurück zum Zitat Hwang, T., Hwang, C.-C., Li, C.-M.: Multiparty quantum secret sharing based on GHZ states. Phys. Scr. 83(4), 045004 (2011)CrossRefADSMATH Hwang, T., Hwang, C.-C., Li, C.-M.: Multiparty quantum secret sharing based on GHZ states. Phys. Scr. 83(4), 045004 (2011)CrossRefADSMATH
35.
Zurück zum Zitat Hwang, T., Hwang, C.-C., Yang, C.-W., Li, C.-M.: Revisiting Deng et al.’s multiparty quantum secret sharing protocol. Int. J. Theor. Phys. 50(9), 2790–2798 (2011)MathSciNetCrossRefMATH Hwang, T., Hwang, C.-C., Yang, C.-W., Li, C.-M.: Revisiting Deng et al.’s multiparty quantum secret sharing protocol. Int. J. Theor. Phys. 50(9), 2790–2798 (2011)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Lin, J., Hwang, T.: An enhancement on Shi et al.’s multiparty quantum secret sharing protocol. Opt. Commun. 284(5), 1468–1471 (2011)MathSciNetCrossRefADS Lin, J., Hwang, T.: An enhancement on Shi et al.’s multiparty quantum secret sharing protocol. Opt. Commun. 284(5), 1468–1471 (2011)MathSciNetCrossRefADS
37.
Zurück zum Zitat Liu, L.L., Tsai, C.W., Hwang, T.: Quantum secret sharing using symmetric W state. Int. J. Theor. Phys. 51(7), 2291–2306 (2012)MathSciNetCrossRefMATH Liu, L.L., Tsai, C.W., Hwang, T.: Quantum secret sharing using symmetric W state. Int. J. Theor. Phys. 51(7), 2291–2306 (2012)MathSciNetCrossRefMATH
38.
Zurück zum Zitat Tsai, C.W., Hwang, T.: Multi-party quantum secret sharing based on two special entangled states. Sci. China Phys. Mech. 55(3), 460–464 (2012)CrossRef Tsai, C.W., Hwang, T.: Multi-party quantum secret sharing based on two special entangled states. Sci. China Phys. Mech. 55(3), 460–464 (2012)CrossRef
39.
Zurück zum Zitat Tseng, H.-Y., Tsai, C.-W., Hwang, T., Li, C.-M.: Quantum secret sharing based on quantum search algorithm. Int. J. Theor. Phys. 51(10), 3101–3108 (2012)MathSciNetCrossRefMATH Tseng, H.-Y., Tsai, C.-W., Hwang, T., Li, C.-M.: Quantum secret sharing based on quantum search algorithm. Int. J. Theor. Phys. 51(10), 3101–3108 (2012)MathSciNetCrossRefMATH
40.
Zurück zum Zitat Yang, C.-W., Tsai, C.-W., Hwang, T.: Thwarting intercept-and-resend attack on Zhang’s quantum secret sharing using collective rotation noises. Quantum Inf. Process. 11(1), 113–122 (2012)MathSciNetCrossRefMATH Yang, C.-W., Tsai, C.-W., Hwang, T.: Thwarting intercept-and-resend attack on Zhang’s quantum secret sharing using collective rotation noises. Quantum Inf. Process. 11(1), 113–122 (2012)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Lin, J., Hwang, T.: Bell state entanglement swappings over collective noises and their applications on quantum cryptography. Quantum Inf. Process. 12(2), 1089–1107 (2013)MathSciNetCrossRefADSMATH Lin, J., Hwang, T.: Bell state entanglement swappings over collective noises and their applications on quantum cryptography. Quantum Inf. Process. 12(2), 1089–1107 (2013)MathSciNetCrossRefADSMATH
43.
Zurück zum Zitat Lin, J., Yang, C.-W., Tsai, C.-W., Hwang, T.: Intercept-resend attacks on semiquantum secret sharing and the improvements. Int. J. Theor. Phys. 52(1), 156–162 (2013)MathSciNetCrossRefMATH Lin, J., Yang, C.-W., Tsai, C.-W., Hwang, T.: Intercept-resend attacks on semiquantum secret sharing and the improvements. Int. J. Theor. Phys. 52(1), 156–162 (2013)MathSciNetCrossRefMATH
45.
46.
48.
Zurück zum Zitat Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE international conference on computers, systems and signal processing, Bangalore, India (1984) Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE international conference on computers, systems and signal processing, Bangalore, India (1984)
49.
Zurück zum Zitat Yang, C.-W., Hwang, T., Luo, Y.-P.: Enhancement on “Quantum blind signature based on two-state vector formalism”. Quantum Inf. Process. 12(1), 109–117 (2013)MathSciNetCrossRefADSMATH Yang, C.-W., Hwang, T., Luo, Y.-P.: Enhancement on “Quantum blind signature based on two-state vector formalism”. Quantum Inf. Process. 12(1), 109–117 (2013)MathSciNetCrossRefADSMATH
50.
Zurück zum Zitat Yang, C.-W., Hwang, T.: Improved QSDC protocol over a collective-dephasing noise channel. Int. J. Theor. Phys. 51(12), 3941–3950 (2012)MathSciNetCrossRefMATH Yang, C.-W., Hwang, T.: Improved QSDC protocol over a collective-dephasing noise channel. Int. J. Theor. Phys. 51(12), 3941–3950 (2012)MathSciNetCrossRefMATH
51.
52.
Zurück zum Zitat Zhang, M., Wei, L.-F.: Quantum gate implementations in the separated ion-traps by fast laser pulses. Chin. Phys. Lett. 29(8), 080301 (2012)CrossRefADS Zhang, M., Wei, L.-F.: Quantum gate implementations in the separated ion-traps by fast laser pulses. Chin. Phys. Lett. 29(8), 080301 (2012)CrossRefADS
53.
Zurück zum Zitat Gao, G., Cai, G., Huang, S., Tang, L., Gu, W., Wang, M., Jiang, N.: 1\(\rightarrow \)N quantum controlled phase gate realized in a circuit QED system. Sci. China Phys. 55(8), 1422–1426 (2012)CrossRef Gao, G., Cai, G., Huang, S., Tang, L., Gu, W., Wang, M., Jiang, N.: 1\(\rightarrow \)N quantum controlled phase gate realized in a circuit QED system. Sci. China Phys. 55(8), 1422–1426 (2012)CrossRef
54.
Zurück zum Zitat Yan, X., Jie, S., Pei-Min, L., He-Shan, S.: Efficient implementation of the two-qubit controlled phase gate with cross-Kerr nonlinearity. J. Phys. B 44(2), 025503 (2011)CrossRefADS Yan, X., Jie, S., Pei-Min, L., He-Shan, S.: Efficient implementation of the two-qubit controlled phase gate with cross-Kerr nonlinearity. J. Phys. B 44(2), 025503 (2011)CrossRefADS
55.
Zurück zum Zitat Jiang, N.-Q., Xu, P., Wu, L.: Realization of 1 \(\rightarrow \) n controlled phase gate in cavity QED. Int. J. Quant. Inf. 09(02), 773–778 (2011)CrossRefMATH Jiang, N.-Q., Xu, P., Wu, L.: Realization of 1 \(\rightarrow \) n controlled phase gate in cavity QED. Int. J. Quant. Inf. 09(02), 773–778 (2011)CrossRefMATH
56.
Zurück zum Zitat Yang, C.-P., Liu, Y.-X., Nori, F.: Phase gate of one qubit simultaneously controlling n qubits in a cavity. Phys. Rev. A 81(6), 062323 (2010)CrossRefADS Yang, C.-P., Liu, Y.-X., Nori, F.: Phase gate of one qubit simultaneously controlling n qubits in a cavity. Phys. Rev. A 81(6), 062323 (2010)CrossRefADS
57.
Zurück zum Zitat Wang, Y., Su, X., Shen, H., Tan, A., Xie, C., Peng, K.: Toward demonstrating controlled-X operation based on continuous-variable four-partite cluster states and quantum teleporters. Phys. Rev. A 81(2), 022311 (2010)CrossRefADS Wang, Y., Su, X., Shen, H., Tan, A., Xie, C., Peng, K.: Toward demonstrating controlled-X operation based on continuous-variable four-partite cluster states and quantum teleporters. Phys. Rev. A 81(2), 022311 (2010)CrossRefADS
58.
Zurück zum Zitat Tom, M., Jaideep, M., Bruno, N.: Implementing quantum gates using the ferromagnetic spin- J XXZ chain with kink boundary conditions. New J. Phys. 12(2), 025003 (2010)CrossRef Tom, M., Jaideep, M., Bruno, N.: Implementing quantum gates using the ferromagnetic spin- J XXZ chain with kink boundary conditions. New J. Phys. 12(2), 025003 (2010)CrossRef
59.
Zurück zum Zitat Isenhower, L., Urban, E., Zhang, X.L., Gill, A.T., Henage, T., Johnson, T.A., Walker, T.G., Saffman, M.: Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett. 104(1), 010503 (2010)CrossRefADS Isenhower, L., Urban, E., Zhang, X.L., Gill, A.T., Henage, T., Johnson, T.A., Walker, T.G., Saffman, M.: Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett. 104(1), 010503 (2010)CrossRefADS
60.
Zurück zum Zitat Ghosh, J., Geller, M.R.: Controlled-not gate with weakly coupled qubits: dependence of fidelity on the form of interaction. Phys. Rev. A 81(5), 052340 (2010)CrossRefADS Ghosh, J., Geller, M.R.: Controlled-not gate with weakly coupled qubits: dependence of fidelity on the form of interaction. Phys. Rev. A 81(5), 052340 (2010)CrossRefADS
61.
Zurück zum Zitat Miao, Z., Xiaohui, J., Jia, H.Y., Wei, L.F.: Controlled-NOT gates with ion traps could be implemented by only two-step laser pulses. J. Phys. B 42(3), 035501 (2009)CrossRefADS Miao, Z., Xiaohui, J., Jia, H.Y., Wei, L.F.: Controlled-NOT gates with ion traps could be implemented by only two-step laser pulses. J. Phys. B 42(3), 035501 (2009)CrossRefADS
62.
Zurück zum Zitat Monroe, C., Meekhof, D.M., King, B.E., Itano, W.M., Wineland, D.J.: Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75(25), 4714–4717 (1995)MathSciNetCrossRefADSMATH Monroe, C., Meekhof, D.M., King, B.E., Itano, W.M., Wineland, D.J.: Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75(25), 4714–4717 (1995)MathSciNetCrossRefADSMATH
Metadaten
Titel
Dynamic quantum secret sharing protocol based on GHZ state
verfasst von
Ci-Hong Liao
Chun-Wei Yang
Tzonelish Hwang
Publikationsdatum
01.08.2014
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 8/2014
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-014-0779-x

Weitere Artikel der Ausgabe 8/2014

Quantum Information Processing 8/2014 Zur Ausgabe

Neuer Inhalt