Skip to main content
Erschienen in: Quantum Information Processing 1/2020

01.01.2020

Optically controlled quantum gates for three spin qubits in quantum dot–microcavity coupled systems

verfasst von: Nam-Chol Kim, Song-Il Choe, Myong-Chol Ko, Ju-Song Ryom, Nam-Chol Ho

Erschienen in: Quantum Information Processing | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We investigate theoretically the possibility of achieving feasible solid-state quantum computing by compactly constructing a set of two or three quantum gates on stationary electron spin qubits, including the controlled NOT gate, Toffoli gate and Fredkin gate. In our schemes, both of the target qubits and control qubits are all encoded on the confined electron spins in quantum dots embedded in optical microcavities with two partially reflective mirrors. In this paper, the schemes are based on spin selective photon reflection from the microcavity and are achieved in deterministic ways by the sequential detection of the auxiliary photons. The feasibilities of the proposed schemes are estimated by high average fidelities of the gates which are achievable in both the weak coupling and the strong coupling regimes. Under the present technology, our proposed schemes are feasible, opening the promising perspectives for constructing a solid-state quantum computation and quantum information processing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH
2.
Zurück zum Zitat Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)ADS Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)ADS
3.
Zurück zum Zitat Ren, B.C., Wei, H.R., Hua, M., Li, T., Deng, F.G.: Complete hyperentangled Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. Opt. Express 20, 24664–24677 (2012)ADS Ren, B.C., Wei, H.R., Hua, M., Li, T., Deng, F.G.: Complete hyperentangled Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. Opt. Express 20, 24664–24677 (2012)ADS
4.
Zurück zum Zitat Dong, L., Xiu, X.M., Gao, Y.J., Yi, X.X.: A nearly deterministic scheme for generating χ-type entangled states with weak cross-Kerr nonlinearities. Quantum Inf. Process. 12, 1787–1795 (2013)ADSMathSciNetMATH Dong, L., Xiu, X.M., Gao, Y.J., Yi, X.X.: A nearly deterministic scheme for generating χ-type entangled states with weak cross-Kerr nonlinearities. Quantum Inf. Process. 12, 1787–1795 (2013)ADSMathSciNetMATH
5.
6.
Zurück zum Zitat Monz, T., et al.: Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett. 102, 040501 (2009)ADS Monz, T., et al.: Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett. 102, 040501 (2009)ADS
7.
Zurück zum Zitat Shi, Y.Y.: Both Toffoli and controlled-NOT need little help to do universal quantum computing. Quantum Inf. Comput. 3, 084–092 (2003)MathSciNet Shi, Y.Y.: Both Toffoli and controlled-NOT need little help to do universal quantum computing. Quantum Inf. Comput. 3, 084–092 (2003)MathSciNet
8.
Zurück zum Zitat Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci. Stat. Comput. 26, 1484–1509 (1997)MathSciNetMATH Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci. Stat. Comput. 26, 1484–1509 (1997)MathSciNetMATH
9.
Zurück zum Zitat Dennis, E.: Toward fault-tolerant quantum computation without concatenation. Phys. Rev. A 63, 052314 (2001)ADS Dennis, E.: Toward fault-tolerant quantum computation without concatenation. Phys. Rev. A 63, 052314 (2001)ADS
10.
Zurück zum Zitat Cory, D.G., et al.: Experimental quantum error correction. Phys. Rev. Lett. 81, 2152–2155 (1998)ADS Cory, D.G., et al.: Experimental quantum error correction. Phys. Rev. Lett. 81, 2152–2155 (1998)ADS
11.
Zurück zum Zitat Gershenfeld, N.A., Chuang, I.L.: Bulk spin-resonance quantum computation. Science 275, 350–356 (1997)MathSciNetMATH Gershenfeld, N.A., Chuang, I.L.: Bulk spin-resonance quantum computation. Science 275, 350–356 (1997)MathSciNetMATH
12.
Zurück zum Zitat Liang, Z.T., Du, Y.X., Huang, W., Xue, Z.Y., Yan, H.: Nonadiabatic holonomic quantum computation in decoherence-free subspaces with trapped ions. Phys. Rev. A 89, 062312 (2014)ADS Liang, Z.T., Du, Y.X., Huang, W., Xue, Z.Y., Yan, H.: Nonadiabatic holonomic quantum computation in decoherence-free subspaces with trapped ions. Phys. Rev. A 89, 062312 (2014)ADS
13.
Zurück zum Zitat Kielpinski, D., Monroe, C., Wineland, D.J.: Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002)ADS Kielpinski, D., Monroe, C., Wineland, D.J.: Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002)ADS
14.
Zurück zum Zitat Rauschenbeutel, A., et al.: Coherent operation of a tunable quantum phase gate in cavity QED. Phys. Rev. Lett. 83, 5166–5169 (1999)ADS Rauschenbeutel, A., et al.: Coherent operation of a tunable quantum phase gate in cavity QED. Phys. Rev. Lett. 83, 5166–5169 (1999)ADS
15.
Zurück zum Zitat Zou, X.B., Xiao, Y.F., Li, S.B., Yang, Y., Guo, G.C.: Quantum phase gate through a dispersive atom-field interaction. Phys. Rev. A 75, 064301 (2007)ADS Zou, X.B., Xiao, Y.F., Li, S.B., Yang, Y., Guo, G.C.: Quantum phase gate through a dispersive atom-field interaction. Phys. Rev. A 75, 064301 (2007)ADS
16.
Zurück zum Zitat Wang, H.F., Zhu, A.D., Zhang, S., Yeon, K.H.: Simple implementation of discrete quantum Fourier transform via cavity quantum electrodynamics. New J. Phys. 13, 013021 (2011)ADS Wang, H.F., Zhu, A.D., Zhang, S., Yeon, K.H.: Simple implementation of discrete quantum Fourier transform via cavity quantum electrodynamics. New J. Phys. 13, 013021 (2011)ADS
17.
Zurück zum Zitat Wang, H.F., Shao, X.Q., Zhao, Y.F., Zhang, S., Yeon, K.H.: Protocol and quantum circuit for implementing the N-bit discrete quantum Fourier transform in cavity QED. J. Phys. B At. Mol. Opt. Phys. 43, 065503 (2010)ADS Wang, H.F., Shao, X.Q., Zhao, Y.F., Zhang, S., Yeon, K.H.: Protocol and quantum circuit for implementing the N-bit discrete quantum Fourier transform in cavity QED. J. Phys. B At. Mol. Opt. Phys. 43, 065503 (2010)ADS
18.
Zurück zum Zitat Wang, H.F., Zhang, S.: Linear optical generation of multipartite entanglement with conventional photon detectors. Phys. Rev. A 79, 042336 (2009)ADS Wang, H.F., Zhang, S.: Linear optical generation of multipartite entanglement with conventional photon detectors. Phys. Rev. A 79, 042336 (2009)ADS
19.
Zurück zum Zitat Xue, Z.Y., Zhu, S.L., You, J.Q., Wang, Z.D.: Implementing topological quantum manipulation with superconducting circuits. Phys. Rev. A 79, 040303(R) (2009)ADS Xue, Z.Y., Zhu, S.L., You, J.Q., Wang, Z.D.: Implementing topological quantum manipulation with superconducting circuits. Phys. Rev. A 79, 040303(R) (2009)ADS
20.
Zurück zum Zitat You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589–597 (2011)ADS You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589–597 (2011)ADS
21.
Zurück zum Zitat Ciorga, M., et al.: Addition spectrum of a lateral dot from Coulomb and spin blockade spectroscopy. Phys. Rev. B 61, R16315(R) (2000)ADS Ciorga, M., et al.: Addition spectrum of a lateral dot from Coulomb and spin blockade spectroscopy. Phys. Rev. B 61, R16315(R) (2000)ADS
22.
Zurück zum Zitat Elzerman, J.M., et al.: Few-electron quantum dot circuit with integrated charge read out. Phys. Rev. B 67, 161308(R) (2003)ADS Elzerman, J.M., et al.: Few-electron quantum dot circuit with integrated charge read out. Phys. Rev. B 67, 161308(R) (2003)ADS
23.
Zurück zum Zitat Petta, J.R., et al.: Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005)ADS Petta, J.R., et al.: Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005)ADS
24.
Zurück zum Zitat Greilich, A.D., et al.: Mode locking of electron spin coherences in singly charged quantum dots. Science 313, 341–345 (2006)ADS Greilich, A.D., et al.: Mode locking of electron spin coherences in singly charged quantum dots. Science 313, 341–345 (2006)ADS
25.
Zurück zum Zitat Press, D., et al.: Ultrafast optical spin echo in a single quantum dot. Nat. Photonics 4, 367–370 (2010)ADS Press, D., et al.: Ultrafast optical spin echo in a single quantum dot. Nat. Photonics 4, 367–370 (2010)ADS
26.
Zurück zum Zitat Atature, M., et al.: Quantum-dot spin-state preparation with near-unity fidelity. Science 312, 551–553 (2006)ADS Atature, M., et al.: Quantum-dot spin-state preparation with near-unity fidelity. Science 312, 551–553 (2006)ADS
27.
Zurück zum Zitat Atatüre, M., et al.: Observation of Faraday rotation from a single confined spin. Nat. Phys. 3, 101–106 (2007) Atatüre, M., et al.: Observation of Faraday rotation from a single confined spin. Nat. Phys. 3, 101–106 (2007)
28.
Zurück zum Zitat Hanson, R., et al.: Single-shot read out of electron spin states in a quantum dot using spin-dependent tunnel rates. Phys. Rev. Lett. 94, 196802 (2005)ADS Hanson, R., et al.: Single-shot read out of electron spin states in a quantum dot using spin-dependent tunnel rates. Phys. Rev. Lett. 94, 196802 (2005)ADS
29.
Zurück zum Zitat Berezovsky, J., Mikkelsen, M.H., Stoltz, N.G., Coldren, L.A., Awschalom, D.D.: Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008)ADS Berezovsky, J., Mikkelsen, M.H., Stoltz, N.G., Coldren, L.A., Awschalom, D.D.: Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008)ADS
30.
Zurück zum Zitat Press, D., Ladd, T.D., Zhang, B.Y., Yamamoto, Y.: Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008)ADS Press, D., Ladd, T.D., Zhang, B.Y., Yamamoto, Y.: Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008)ADS
31.
Zurück zum Zitat Gupta, J.A., Knobel, R., Samarth, N., Awschalom, D.D.: Ultrafast manipulation of electron spin coherence. Science 292, 2458–2461 (2001)ADS Gupta, J.A., Knobel, R., Samarth, N., Awschalom, D.D.: Ultrafast manipulation of electron spin coherence. Science 292, 2458–2461 (2001)ADS
32.
Zurück zum Zitat Chen, P.C., Piermarocchi, C., Sham, L.J., Gammon, D., Steel, D.G.: Theory of quantum optical control of a single spin quantum dot. Phys. Rev. B 69, 075320 (2004)ADS Chen, P.C., Piermarocchi, C., Sham, L.J., Gammon, D., Steel, D.G.: Theory of quantum optical control of a single spin quantum dot. Phys. Rev. B 69, 075320 (2004)ADS
33.
Zurück zum Zitat Peter, E., et al.: Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95, 067401 (2005)ADS Peter, E., et al.: Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95, 067401 (2005)ADS
34.
Zurück zum Zitat Hu, C.Y., Munro, W.J., O’Brien, J.L., Rarity, J.G.: Proposed entanglement beam splitter using a quantum-dot spin in a doublesided optical microcavity. Phys. Rev. B 80, 205326 (2009)ADS Hu, C.Y., Munro, W.J., O’Brien, J.L., Rarity, J.G.: Proposed entanglement beam splitter using a quantum-dot spin in a doublesided optical microcavity. Phys. Rev. B 80, 205326 (2009)ADS
35.
Zurück zum Zitat Hu, C.Y., Munro, W.J., Rarity, J.G.: Deterministic photon entangler using a charged quantum dot inside a microcavity. Phys. Rev. B 78, 125318 (2008)ADS Hu, C.Y., Munro, W.J., Rarity, J.G.: Deterministic photon entangler using a charged quantum dot inside a microcavity. Phys. Rev. B 78, 125318 (2008)ADS
36.
Zurück zum Zitat Hu, C.Y., Rarity, J.G.: Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity. Phys. Rev. B 83, 115303 (2011)ADS Hu, C.Y., Rarity, J.G.: Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity. Phys. Rev. B 83, 115303 (2011)ADS
37.
Zurück zum Zitat Brunner, N., Young, A.B., Hu, C.Y., Rarity, J.G.: Proposal for a loophole-free bell test based on spin-photon interaction in cavities. New J. Phys. 15, 105006 (2013)ADS Brunner, N., Young, A.B., Hu, C.Y., Rarity, J.G.: Proposal for a loophole-free bell test based on spin-photon interaction in cavities. New J. Phys. 15, 105006 (2013)ADS
38.
Zurück zum Zitat Young, A.B., Hu, C.Y., Rarity, J.G.: Generating entanglement with low-Q factor microcavities. Phys. Rev. A 87, 012332 (2013)ADS Young, A.B., Hu, C.Y., Rarity, J.G.: Generating entanglement with low-Q factor microcavities. Phys. Rev. A 87, 012332 (2013)ADS
39.
Zurück zum Zitat Hu, C.Y., Young, A., O’Brien, J.L., Munro, W.J., Rarity, J.G.: Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085307 (2008)ADS Hu, C.Y., Young, A., O’Brien, J.L., Munro, W.J., Rarity, J.G.: Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085307 (2008)ADS
40.
Zurück zum Zitat Wei, H.R., Deng, F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87, 022305 (2013)ADS Wei, H.R., Deng, F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87, 022305 (2013)ADS
41.
Zurück zum Zitat Ren, B.C., Wei, H.R., Deng, F.G.: Laser, Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity. Phys. Lett. 10, 095202 (2013) Ren, B.C., Wei, H.R., Deng, F.G.: Laser, Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity. Phys. Lett. 10, 095202 (2013)
42.
Zurück zum Zitat Ren, B.C., Deng, F.G.: Hyper-parallel photonic quantum computation with coupled quantum dots. Sci. Rep. 4, 4623 (2014) Ren, B.C., Deng, F.G.: Hyper-parallel photonic quantum computation with coupled quantum dots. Sci. Rep. 4, 4623 (2014)
43.
Zurück zum Zitat Wei, H.R., Deng, F.G.: Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity. Opt. Express 15, 17671 (2013)ADS Wei, H.R., Deng, F.G.: Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity. Opt. Express 15, 17671 (2013)ADS
44.
Zurück zum Zitat Wang, C., Zhang, Y., Jin, G.S.: Entanglement purification and concentration of electron-spin entangled states using quantum dot spins in optical microcavities. Phys. Rev. A 84, 032307 (2011)ADS Wang, C., Zhang, Y., Jin, G.S.: Entanglement purification and concentration of electron-spin entangled states using quantum dot spins in optical microcavities. Phys. Rev. A 84, 032307 (2011)ADS
45.
Zurück zum Zitat Wang, T.J., Song, S.Y., Long, G.L.: Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities. Phys. Rev. A 85, 062311 (2012)ADS Wang, T.J., Song, S.Y., Long, G.L.: Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities. Phys. Rev. A 85, 062311 (2012)ADS
46.
Zurück zum Zitat Han, Xue, Shi, Hu, Guo, Qi, Wang, Hong-Fu, Zhu, Ai-Dong, Zhang, Shou: Effective W-state fusion strategies for electronic and photonic qubits via the quantum-dot-microcavity coupled system. Sci. Rep. 5, 12790 (2015)ADS Han, Xue, Shi, Hu, Guo, Qi, Wang, Hong-Fu, Zhu, Ai-Dong, Zhang, Shou: Effective W-state fusion strategies for electronic and photonic qubits via the quantum-dot-microcavity coupled system. Sci. Rep. 5, 12790 (2015)ADS
47.
Zurück zum Zitat Wang, Hong-Fu, Zhu, Ai-Dong, Zhang, Shou, Yeon, Kyu-Hwang: Optically controlled phase gate and teleportation of a controlled-not gate for spin qubits in a quantum-dot–microcavity coupled system. Phys. Rev. A 87, 062337 (2013)ADS Wang, Hong-Fu, Zhu, Ai-Dong, Zhang, Shou, Yeon, Kyu-Hwang: Optically controlled phase gate and teleportation of a controlled-not gate for spin qubits in a quantum-dot–microcavity coupled system. Phys. Rev. A 87, 062337 (2013)ADS
48.
Zurück zum Zitat Guo, Qi, Cheng, Liu-Yong, Chen, Li, Wang, Hong-Fu, Zhang, Shou: Counterfactual distributed controlled-phase gate for quantum-dot spin qubits in double-sided optical microcavities. Phys. Rev. A 90, 042327 (2014)ADS Guo, Qi, Cheng, Liu-Yong, Chen, Li, Wang, Hong-Fu, Zhang, Shou: Counterfactual distributed controlled-phase gate for quantum-dot spin qubits in double-sided optical microcavities. Phys. Rev. A 90, 042327 (2014)ADS
49.
Zurück zum Zitat Shi, Hu, Cui, Wen-Xue, Wang, Dong-Yang, Bai, Cheng-Hua, Guo, Qi, Wang, Hong-Fu, Zhu, Ai-Dong, Zhang, Shou: Teleportation of a Toffoli gate among distant solid-state qubits with quantum dots embedded in optical microcavities. Sci. Rep. 5, 11321 (2015)ADS Shi, Hu, Cui, Wen-Xue, Wang, Dong-Yang, Bai, Cheng-Hua, Guo, Qi, Wang, Hong-Fu, Zhu, Ai-Dong, Zhang, Shou: Teleportation of a Toffoli gate among distant solid-state qubits with quantum dots embedded in optical microcavities. Sci. Rep. 5, 11321 (2015)ADS
50.
Zurück zum Zitat Warburton, R.J., Dürr, C.S., Karrai, K., Kotthaus, J.P., Medeiros-Ribeiro, G., Petroff, P.M.: Charged excitons in self-assembled semiconductor quantum dots. Phys. Rev. Lett. 79, 5282 (1997)ADS Warburton, R.J., Dürr, C.S., Karrai, K., Kotthaus, J.P., Medeiros-Ribeiro, G., Petroff, P.M.: Charged excitons in self-assembled semiconductor quantum dots. Phys. Rev. Lett. 79, 5282 (1997)ADS
51.
Zurück zum Zitat Hu, C.Y., Ossau, W., Yakovlev, D.R., Landwehr, G., Wojtowicz, T., Karczewski, G., Kossut, J.: Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas. Phys. Rev. B 58, R1766–R1769 (1998)ADS Hu, C.Y., Ossau, W., Yakovlev, D.R., Landwehr, G., Wojtowicz, T., Karczewski, G., Kossut, J.: Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas. Phys. Rev. B 58, R1766–R1769 (1998)ADS
52.
Zurück zum Zitat Fischer, J., Trif, M., Coish, W., Loss, D.: Spin interaction, relaxation and decoherence in quantum dots. Solid State Commun. 149, 1443 (2009)ADS Fischer, J., Trif, M., Coish, W., Loss, D.: Spin interaction, relaxation and decoherence in quantum dots. Solid State Commun. 149, 1443 (2009)ADS
53.
Zurück zum Zitat Toffoli T, Reversible computing. In: de Bakker, J.W., van Leeuwen, J. (eds.) Automata Languages and Programming, Seventh Colloquium. Lecture Notes in Computer Science, vol. 84, pp. 632–644. Springer (1985) Toffoli T, Reversible computing. In: de Bakker, J.W., van Leeuwen, J. (eds.) Automata Languages and Programming, Seventh Colloquium. Lecture Notes in Computer Science, vol. 84, pp. 632–644. Springer (1985)
54.
Zurück zum Zitat Shende, V., Markov, I.L., Bullock, S.: Synthesis of quantum logic circuits. IEEE Trans. Comput Aided Des. 25(6), 100 (2006) Shende, V., Markov, I.L., Bullock, S.: Synthesis of quantum logic circuits. IEEE Trans. Comput Aided Des. 25(6), 100 (2006)
55.
Zurück zum Zitat Press, D., Ladd, T.D., Zhang, B.Y., Yamamoto, Y.: Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature (London) 456, 218 (2008)ADS Press, D., Ladd, T.D., Zhang, B.Y., Yamamoto, Y.: Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature (London) 456, 218 (2008)ADS
56.
Zurück zum Zitat Gupta, J.A., Knobel, R., Samarth, N., Awschalom, D.D.: Ultrafast manipulation of electron spin coherence. Science 292, 2458–2461 (2001)ADS Gupta, J.A., Knobel, R., Samarth, N., Awschalom, D.D.: Ultrafast manipulation of electron spin coherence. Science 292, 2458–2461 (2001)ADS
57.
Zurück zum Zitat Brunner, D., et al.: A coherent single-hole spin in a semiconductor. Science 325, 70–72 (2009)ADS Brunner, D., et al.: A coherent single-hole spin in a semiconductor. Science 325, 70–72 (2009)ADS
58.
Zurück zum Zitat Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)MATH Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)MATH
59.
Zurück zum Zitat Bonato, C., Haupt, F., Oemrawsingh, S.S.R., Gudat, J., Ding, D., van Exter, M.P., Bouwmeester, D.: CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010)ADS Bonato, C., Haupt, F., Oemrawsingh, S.S.R., Gudat, J., Ding, D., van Exter, M.P., Bouwmeester, D.: CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010)ADS
60.
Zurück zum Zitat Reitzenstein, S., Hofmann, C., Gorbunov, A., Strauß, M., Kwon, S.H., Schneider, C., Löffler, A., Höfling, S., Kamp, M., Forchel, A.: AlAs/GaAs micropillar cavities with quality factors exceeding 150.000. Appl. Phys. Lett. 90, 251109 (2007)ADS Reitzenstein, S., Hofmann, C., Gorbunov, A., Strauß, M., Kwon, S.H., Schneider, C., Löffler, A., Höfling, S., Kamp, M., Forchel, A.: AlAs/GaAs micropillar cavities with quality factors exceeding 150.000. Appl. Phys. Lett. 90, 251109 (2007)ADS
61.
Zurück zum Zitat Reithmaier, J.P., Sek, G., Löffler, A., Hofmann, C., Kuhn, S., Reitzenstein, S., Keldysh, L.V., Kulakovskii, V.D., Reinecke, T.L., Forchel, A.: Strong coupling in a single quantum dot-semiconductor microcavity system. Nature (London) 432, 197–200 (2004)ADS Reithmaier, J.P., Sek, G., Löffler, A., Hofmann, C., Kuhn, S., Reitzenstein, S., Keldysh, L.V., Kulakovskii, V.D., Reinecke, T.L., Forchel, A.: Strong coupling in a single quantum dot-semiconductor microcavity system. Nature (London) 432, 197–200 (2004)ADS
62.
Zurück zum Zitat Poyatos, J.F., Cirac, J.I., Zoller, P.: Complete characterization of a quantum process: the two-bit quantum gate. Phys. Rev. Lett. 78, 390–393 (1997)ADS Poyatos, J.F., Cirac, J.I., Zoller, P.: Complete characterization of a quantum process: the two-bit quantum gate. Phys. Rev. Lett. 78, 390–393 (1997)ADS
63.
Zurück zum Zitat Young, A.B., Oulton, R., Hu, C.Y., Thijssen, A.C.T., Schneider, C., Reitzenstein, S., Kamp, M., Hofling, S., Worschech, L., Forchel, A., Rarity, J.G.: Quantum-dot-induced phase shift in a pillar microcavity. Phys. Rev. A 84, 011803 (2011)ADS Young, A.B., Oulton, R., Hu, C.Y., Thijssen, A.C.T., Schneider, C., Reitzenstein, S., Kamp, M., Hofling, S., Worschech, L., Forchel, A., Rarity, J.G.: Quantum-dot-induced phase shift in a pillar microcavity. Phys. Rev. A 84, 011803 (2011)ADS
64.
Zurück zum Zitat Loo, V., Lanco, L., Lemaˆıtre, A., Sagnes, I., Krebs, O., Voisin, P., Senellart, P.: Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar. Appl. Phys. Lett. 97, 241110 (2010)ADS Loo, V., Lanco, L., Lemaˆıtre, A., Sagnes, I., Krebs, O., Voisin, P., Senellart, P.: Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar. Appl. Phys. Lett. 97, 241110 (2010)ADS
65.
Zurück zum Zitat Shende, V.V., Markov, I.L.: On the CNOT-cost of Toffoli gate. Quantum Inf. Comput. 9, 0461–0468 (2009)MathSciNetMATH Shende, V.V., Markov, I.L.: On the CNOT-cost of Toffoli gate. Quantum Inf. Comput. 9, 0461–0468 (2009)MathSciNetMATH
66.
Zurück zum Zitat Shao, X.Q., Wang, H.F., Chen, L., Zhang, S., Zhao, Y.F., Yeon, K.H.: Distributed CNOT gate via quantum Zeno dynamics. J. Opt. Soc. Am. B 26, 2440 (2009)ADSMathSciNet Shao, X.Q., Wang, H.F., Chen, L., Zhang, S., Zhao, Y.F., Yeon, K.H.: Distributed CNOT gate via quantum Zeno dynamics. J. Opt. Soc. Am. B 26, 2440 (2009)ADSMathSciNet
67.
Zurück zum Zitat Langbein, W., et al.: Radiatively limited dephasing in InAs quantum dots. Phys. Rev. B 70, 033301 (2004)ADS Langbein, W., et al.: Radiatively limited dephasing in InAs quantum dots. Phys. Rev. B 70, 033301 (2004)ADS
68.
Zurück zum Zitat Kimble, H.J.: In Cavity Quantum Electrodynamics. Academic, San Diego (1994) Kimble, H.J.: In Cavity Quantum Electrodynamics. Academic, San Diego (1994)
Metadaten
Titel
Optically controlled quantum gates for three spin qubits in quantum dot–microcavity coupled systems
verfasst von
Nam-Chol Kim
Song-Il Choe
Myong-Chol Ko
Ju-Song Ryom
Nam-Chol Ho
Publikationsdatum
01.01.2020
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 1/2020
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-019-2497-x

Weitere Artikel der Ausgabe 1/2020

Quantum Information Processing 1/2020 Zur Ausgabe

Neuer Inhalt