Skip to main content
Erschienen in: Quantum Information Processing 10/2020

01.10.2020

A dynamic programming approach for distributing quantum circuits by bipartite graphs

verfasst von: Zohreh Davarzani, Mariam Zomorodi-Moghadam, Mahboobeh Houshmand, Mostafa Nouri-baygi

Erschienen in: Quantum Information Processing | Ausgabe 10/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

There are many challenges involved in building near-term large-scale quantum computers. Some of these challenges can be overcome by partitioning a quantum circuit into smaller parts and allowing each part to be executed on a smaller quantum unit. This approach is known as distributed quantum computation. In this study, a dynamic programming algorithm is proposed to minimize the number of communications in a distributed quantum circuit. This algorithm consists of two steps: first, the quantum circuit is converted into a bipartite graph model, and then a dynamic programming approach is proposed to partition the model into low-capacity quantum circuits. The proposed approach is evaluated on some benchmark quantum circuits, and a remarkable reduction in the number of required teleportations is obtained.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zomorodi-Moghadam, M., Houshmand, M., Houshmandi, M.: Optimizing teleportation cost in distributed quantum circuits. Theor. Phys. 57(3), 848–861 (2018)MathSciNetCrossRef Zomorodi-Moghadam, M., Houshmand, M., Houshmandi, M.: Optimizing teleportation cost in distributed quantum circuits. Theor. Phys. 57(3), 848–861 (2018)MathSciNetCrossRef
2.
Zurück zum Zitat Van Meter, R., Ladd, T.D., Fowler, A.G., Yamamoto, Y.: Distributed quantum computation architecture using semiconductor nanophotonics. Int. J. Quantum Inf. 8, 295–323 (2010)CrossRef Van Meter, R., Ladd, T.D., Fowler, A.G., Yamamoto, Y.: Distributed quantum computation architecture using semiconductor nanophotonics. Int. J. Quantum Inf. 8, 295–323 (2010)CrossRef
3.
Zurück zum Zitat Krojanski, H.G., Suter, D.: Scaling of decoherence in wide NMR quantum registers. Phys. Rev. Lett. 93(9), 090501 (2004)ADSCrossRef Krojanski, H.G., Suter, D.: Scaling of decoherence in wide NMR quantum registers. Phys. Rev. Lett. 93(9), 090501 (2004)ADSCrossRef
4.
Zurück zum Zitat Nickerson, N.H., Li, Y., Benjamin, S.C.: Topological quantum computing with a very noisy network and local error rates approaching one percent. Nat. Commun. 4, 1756 (2013)ADSCrossRef Nickerson, N.H., Li, Y., Benjamin, S.C.: Topological quantum computing with a very noisy network and local error rates approaching one percent. Nat. Commun. 4, 1756 (2013)ADSCrossRef
5.
Zurück zum Zitat Cuomo, D., Caleffi, M., Cacciapuoti, A.S.: Towards a distributed quantum computing ecosystem. arXiv preprint arXiv:2002.11808 (2020) Cuomo, D., Caleffi, M., Cacciapuoti, A.S.: Towards a distributed quantum computing ecosystem. arXiv preprint arXiv:​2002.​11808 (2020)
6.
Zurück zum Zitat Andres-Martinez, P.: Automated distribution of quantum circuits. Theoret. Comput. Sci. 410(26), 2489–2510 (2018) Andres-Martinez, P.: Automated distribution of quantum circuits. Theoret. Comput. Sci. 410(26), 2489–2510 (2018)
7.
Zurück zum Zitat Van Meter, R., Oskin, M.: Architectural implications of quantum computing technologies. ACM J. Emerg. Technol. Comput. Syst. JETC 2, 2006 (2006) Van Meter, R., Oskin, M.: Architectural implications of quantum computing technologies. ACM J. Emerg. Technol. Comput. Syst. JETC 2, 2006 (2006)
8.
Zurück zum Zitat Meter, V., Munro, W., Nemoto, K., Itoh, K.M.: Arithmetic on a distributed-memory quantum multicomputer. ACM J. Emerg. Technol. Comput. Syst. JETC 3, 2 (2008) Meter, V., Munro, W., Nemoto, K., Itoh, K.M.: Arithmetic on a distributed-memory quantum multicomputer. ACM J. Emerg. Technol. Comput. Syst. JETC 3, 2 (2008)
9.
Zurück zum Zitat Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRef Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRef
10.
Zurück zum Zitat Whitney, M., Isailovic, N., Patel, Y., Kubiatowicz, J.: Automated generation of layout and control for quantum circuits. Phys. Rev. Lett. 85(26), 1330 (2000) Whitney, M., Isailovic, N., Patel, Y., Kubiatowicz, J.: Automated generation of layout and control for quantum circuits. Phys. Rev. Lett. 85(26), 1330 (2000)
11.
Zurück zum Zitat Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10 anniversary edn. Cambridge University Press, Cambridge (2010)CrossRef Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10 anniversary edn. Cambridge University Press, Cambridge (2010)CrossRef
12.
Zurück zum Zitat Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)ADSCrossRef Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)ADSCrossRef
14.
Zurück zum Zitat Zomorodi-Moghadam, M., Taherkhani, M.-A., Navi, K.: Synthesis and optimization by quantum circuit description language. In: Transactions on Computational Science XXIV, pp. 74–91. Springer (2014) Zomorodi-Moghadam, M., Taherkhani, M.-A., Navi, K.: Synthesis and optimization by quantum circuit description language. In: Transactions on Computational Science XXIV, pp. 74–91. Springer (2014)
15.
Zurück zum Zitat Deutsch, D.E.: Quantum computational networks. Proc. R. Soc. Lond. A Math. Phys. Sci. 425(1868), 73–90 (1989)ADSMathSciNetMATH Deutsch, D.E.: Quantum computational networks. Proc. R. Soc. Lond. A Math. Phys. Sci. 425(1868), 73–90 (1989)ADSMathSciNetMATH
16.
17.
Zurück zum Zitat Zomorodi-Moghadam, M., Navi, K.: Rotation-based design and synthesis of quantum circuits. J. Circuits Syst. Comput. 25(12), 1650152 (2016)CrossRef Zomorodi-Moghadam, M., Navi, K.: Rotation-based design and synthesis of quantum circuits. J. Circuits Syst. Comput. 25(12), 1650152 (2016)CrossRef
18.
Zurück zum Zitat Pham, P., Svore, K.M.: A 2D nearest-neighbor quantum architecture for factoring in polylogarithmic depth. Quantum Inf. Comput. 13(11–12), 937–962 (2013)MathSciNet Pham, P., Svore, K.M.: A 2D nearest-neighbor quantum architecture for factoring in polylogarithmic depth. Quantum Inf. Comput. 13(11–12), 937–962 (2013)MathSciNet
20.
Zurück zum Zitat Cleve, R., Buhrman, H.: Substituting quantum entanglement for communication. Phys. Rev. A 56, 1201 (1997)ADSCrossRef Cleve, R., Buhrman, H.: Substituting quantum entanglement for communication. Phys. Rev. A 56, 1201 (1997)ADSCrossRef
21.
Zurück zum Zitat Cirac, J., Ekert, A., Huelga, S., Macchiavello, C.: Distributed quantum computation over noisy channels. Phys. Rev. A 59, 4249 (1999)ADSMathSciNetCrossRef Cirac, J., Ekert, A., Huelga, S., Macchiavello, C.: Distributed quantum computation over noisy channels. Phys. Rev. A 59, 4249 (1999)ADSMathSciNetCrossRef
22.
Zurück zum Zitat Van Meter, R., Devitt, S.J.: The path to scalable distributed quantum computing. Computer 49(9), 31–42 (2016)CrossRef Van Meter, R., Devitt, S.J.: The path to scalable distributed quantum computing. Computer 49(9), 31–42 (2016)CrossRef
25.
Zurück zum Zitat Ying, M., Feng, Y.: An algebraic language for distributed quantum computing. IEEE Trans. Comput. 58(6), 728–743 (2009)MathSciNetCrossRef Ying, M., Feng, Y.: An algebraic language for distributed quantum computing. IEEE Trans. Comput. 58(6), 728–743 (2009)MathSciNetCrossRef
26.
Zurück zum Zitat Beals, R., Brierley, S., Gray, O., Harrow, A.W., Kutin, S., Linden, N., Shepherd, D., Stather, M.: Efficient distributed quantum computing. Proc. R. Soc. A Math. Phys. Eng. Sci. 469(2153), 20120686 (2013)ADSMathSciNetMATH Beals, R., Brierley, S., Gray, O., Harrow, A.W., Kutin, S., Linden, N., Shepherd, D., Stather, M.: Efficient distributed quantum computing. Proc. R. Soc. A Math. Phys. Eng. Sci. 469(2153), 20120686 (2013)ADSMathSciNetMATH
27.
Zurück zum Zitat Streltsov, A., Kampermann, H., Bruß, D.: Quantum cost for sending entanglement. Phys. Rev. Lett. 108, 250501 (2012)ADSCrossRef Streltsov, A., Kampermann, H., Bruß, D.: Quantum cost for sending entanglement. Phys. Rev. Lett. 108, 250501 (2012)ADSCrossRef
28.
Zurück zum Zitat Caleffi, M., Cacciapuoti, A.S., Bianchi, G.: Quantum internet: from communication to distributed computing. In: Proceedings of the 5th ACM International Conference on Nanoscale Computing and Communication, pp. 1–4 (2018) Caleffi, M., Cacciapuoti, A.S., Bianchi, G.: Quantum internet: from communication to distributed computing. In: Proceedings of the 5th ACM International Conference on Nanoscale Computing and Communication, pp. 1–4 (2018)
29.
Zurück zum Zitat Cacciapuoti, A.S., Caleffi, M., Tafuri, F., Cataliotti, F.S., Gherardini, S., Bianchi, G.: Quantum internet: networking challenges in distributed quantum computing. IEEE Netw. 34, 137–143 (2019)CrossRef Cacciapuoti, A.S., Caleffi, M., Tafuri, F., Cataliotti, F.S., Gherardini, S., Bianchi, G.: Quantum internet: networking challenges in distributed quantum computing. IEEE Netw. 34, 137–143 (2019)CrossRef
30.
Zurück zum Zitat Neumann, N.M.P., van Houte, R., Attema, T.: Imperfect distributed quantum phase estimation. In: International Conference on Computational Science, pp. 605–615. Springer (2020) Neumann, N.M.P., van Houte, R., Attema, T.: Imperfect distributed quantum phase estimation. In: International Conference on Computational Science, pp. 605–615. Springer (2020)
31.
32.
Zurück zum Zitat Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in graph partitioning. In: Algorithm Engineering, pp. 117–158. Springer (2016) Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in graph partitioning. In: Algorithm Engineering, pp. 117–158. Springer (2016)
33.
Zurück zum Zitat Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49(2), 291–307 (1970)CrossRef Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49(2), 291–307 (1970)CrossRef
34.
Zurück zum Zitat Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network partitions. In: 19th Design Automation Conference, pp. 175–181. IEEE (1982) Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network partitions. In: 19th Design Automation Conference, pp. 175–181. IEEE (1982)
35.
Zurück zum Zitat Hendrickson, B., Leland, R.W.: A multi-level algorithm for partitioning graphs. SC 95(28), 1–14 (1995) MATH Hendrickson, B., Leland, R.W.: A multi-level algorithm for partitioning graphs. SC 95(28), 1–14 (1995) MATH
36.
Zurück zum Zitat Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)MathSciNetCrossRef Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)MathSciNetCrossRef
37.
Zurück zum Zitat Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel hypergraph partitioning: applications in VLSI domain. IEEE Trans. Very Large Scale Integr. VLSI Syst. 7(1), 69–79 (1999)CrossRef Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel hypergraph partitioning: applications in VLSI domain. IEEE Trans. Very Large Scale Integr. VLSI Syst. 7(1), 69–79 (1999)CrossRef
38.
Zurück zum Zitat Zare, H., Shooshtari, P., Gupta, A., Brinkman, R.R.: Data reduction for spectral clustering to analyze high throughput flow cytometry data. BMC Bioinform. 11(1), 403 (2010)CrossRef Zare, H., Shooshtari, P., Gupta, A., Brinkman, R.R.: Data reduction for spectral clustering to analyze high throughput flow cytometry data. BMC Bioinform. 11(1), 403 (2010)CrossRef
39.
Zurück zum Zitat Arias-Castro, E., Chen, G., Lerman, G., et al.: Spectral clustering based on local linear approximations. Electron. J. Stat. 5, 1537–1587 (2011)MathSciNetCrossRef Arias-Castro, E., Chen, G., Lerman, G., et al.: Spectral clustering based on local linear approximations. Electron. J. Stat. 5, 1537–1587 (2011)MathSciNetCrossRef
40.
Zurück zum Zitat Thulasiraman, K., Swamy, M.N.S.: Graphs: theory and algorithms. John Wiley & Sons (2011) Thulasiraman, K., Swamy, M.N.S.: Graphs: theory and algorithms. John Wiley & Sons (2011)
41.
Zurück zum Zitat Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Exponential algorithmic speedup by a quantum walk. STOC’03 Proc. Thirty-Fifth Annu. ACM Symp. Theory Comput. 410(26), 59–68 (2003)MathSciNetCrossRef Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Exponential algorithmic speedup by a quantum walk. STOC’03 Proc. Thirty-Fifth Annu. ACM Symp. Theory Comput. 410(26), 59–68 (2003)MathSciNetCrossRef
42.
Zurück zum Zitat Whitfield, J.D., Biamonte, J., Aspuru-Guzik, A.: Simulation of electronic structure Hamiltonians using quantum computers. Mol. Phys. 109(5), 735–750 (2011)ADSCrossRef Whitfield, J.D., Biamonte, J., Aspuru-Guzik, A.: Simulation of electronic structure Hamiltonians using quantum computers. Mol. Phys. 109(5), 735–750 (2011)ADSCrossRef
43.
Zurück zum Zitat Wille, R., Grobe, D., Teuber, L., Dueck, G.W., Drechsler, R.: Revlib: an online resource for reversible functions and reversible circuits. In: IEEE International Symposium on Multiple-Valued Logic, pp. 220–225 (2008) Wille, R., Grobe, D., Teuber, L., Dueck, G.W., Drechsler, R.: Revlib: an online resource for reversible functions and reversible circuits. In: IEEE International Symposium on Multiple-Valued Logic, pp. 220–225 (2008)
44.
Zurück zum Zitat Houshmand, M., et al.: An evolutionary approach to optimizing teleportation cost in distributed quantum computation. Int. J. Theor. Phys. 59(4), 1315–1329 (2020)MathSciNetCrossRef Houshmand, M., et al.: An evolutionary approach to optimizing teleportation cost in distributed quantum computation. Int. J. Theor. Phys. 59(4), 1315–1329 (2020)MathSciNetCrossRef
Metadaten
Titel
A dynamic programming approach for distributing quantum circuits by bipartite graphs
verfasst von
Zohreh Davarzani
Mariam Zomorodi-Moghadam
Mahboobeh Houshmand
Mostafa Nouri-baygi
Publikationsdatum
01.10.2020
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 10/2020
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-020-02871-7

Weitere Artikel der Ausgabe 10/2020

Quantum Information Processing 10/2020 Zur Ausgabe

Neuer Inhalt