Skip to main content
Erschienen in: Strength of Materials 3/2015

01.05.2015

Brittle Failure of Graphite Weakened by V-Notches: A Review of Some Recent Results Under Different Loading Modes

verfasst von: F. Berto, A. Campagnolo, P. Gallo

Erschienen in: Strength of Materials | Ausgabe 3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present paper summarizes some recent experimental, theoretical and numerical results on brittle fracture of isostatic polycrystalline graphite. The analyses have been carried out on V-notched samples under mixed mode (I+II), torsion and compression loading, considering various combinations of the notch tip radius, opening angle and notch tilt angle. The static strength of the considered specimens is assessed through an approach based on the strain energy density averaged over a control volume. The center of the control volume is located on the notch edge, where the principal stress reaches its maximum value. The correct orientation is obtained by a rigid rotation of the crescent-shaped volume while the size depends on the fracture toughness and the ultimate strength of the material. This methodology has been already used in the literature to analyze U- and V-shaped notches subject to mode I loading with very good results and advantages with respect to classic approaches. The results reported in this new work show, also under mixed mode loading conditions, a good agreement between experimental data and theoretical predictions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Awaji and S. Sato, “Combined mode fracture toughness measurement by the disk test,” J. Eng. Mater. Technol., 100, 175–182 (1978).CrossRef H. Awaji and S. Sato, “Combined mode fracture toughness measurement by the disk test,” J. Eng. Mater. Technol., 100, 175–182 (1978).CrossRef
2.
Zurück zum Zitat Y. Yamauchi, M. Nakano, K. Kishida, and T. Okabe, “Impact measurement of mixed-mode fracture toughness for brittle materials using edge-notched half-disk specimen,” J. Soc. Mater. Sci. Jpn., 50, 229–234 (2001).CrossRef Y. Yamauchi, M. Nakano, K. Kishida, and T. Okabe, “Impact measurement of mixed-mode fracture toughness for brittle materials using edge-notched half-disk specimen,” J. Soc. Mater. Sci. Jpn., 50, 229–234 (2001).CrossRef
3.
Zurück zum Zitat Y. Yamauchi, M. Nakano, K. Kishida, and T. Okabe, “Measurement of fracture toughness for brittle materials under mixed-mode impact loading using center-notched disk specimen,” J. Soc. Mater. Sci. Jpn., 49, 1324–1329 (2000).CrossRef Y. Yamauchi, M. Nakano, K. Kishida, and T. Okabe, “Measurement of fracture toughness for brittle materials under mixed-mode impact loading using center-notched disk specimen,” J. Soc. Mater. Sci. Jpn., 49, 1324–1329 (2000).CrossRef
4.
Zurück zum Zitat M. Li, M. Tsujimura, and M. Sakai, “Crack-face grain interlocking/bridging of a polycrystalline graphite: The role in mixed mode fracture,” Carbon, 37, 1633–1639 (1999).CrossRef M. Li, M. Tsujimura, and M. Sakai, “Crack-face grain interlocking/bridging of a polycrystalline graphite: The role in mixed mode fracture,” Carbon, 37, 1633–1639 (1999).CrossRef
5.
Zurück zum Zitat L. Shi, H. Li, Z. Zou, et al., “Analysis of crack propagation in nuclear graphite using three-point bending of sandwiched specimens,” J. Nucl. Mater., 372, 141–151 (2008).CrossRef L. Shi, H. Li, Z. Zou, et al., “Analysis of crack propagation in nuclear graphite using three-point bending of sandwiched specimens,” J. Nucl. Mater., 372, 141–151 (2008).CrossRef
6.
Zurück zum Zitat J.-A. J. Wang and K. C. Liu, “An innovative technique for evaluating fracture toughness of graphite materials,” J. Nucl. Mater., 381, 177–184 (2008).CrossRef J.-A. J. Wang and K. C. Liu, “An innovative technique for evaluating fracture toughness of graphite materials,” J. Nucl. Mater., 381, 177–184 (2008).CrossRef
7.
Zurück zum Zitat T. Etter, J. Kuebler, T. Frey, et al., “Strength and fracture toughness of interpenetrating graphite/aluminium composites produced by the indirect squeeze casting process,” Mater. Sci. Eng. A, 386, 61–67 (2004).CrossRef T. Etter, J. Kuebler, T. Frey, et al., “Strength and fracture toughness of interpenetrating graphite/aluminium composites produced by the indirect squeeze casting process,” Mater. Sci. Eng. A, 386, 61–67 (2004).CrossRef
8.
Zurück zum Zitat Y.-J. Yum and H. You, “Pure mode I, II and mixed mode interlaminar fracture of graphite/epoxy composite materials,” J. Reinf. Plast. Compos., 20, 794–808 (2001).CrossRef Y.-J. Yum and H. You, “Pure mode I, II and mixed mode interlaminar fracture of graphite/epoxy composite materials,” J. Reinf. Plast. Compos., 20, 794–808 (2001).CrossRef
9.
Zurück zum Zitat S. N. Wosu, D. Hui, and P. K. Dutta, “Dynamic mixed-mode I/II delamination fracture and energy release rate of unidirectional graphite/epoxy composites,” Eng. Fract. Mech., 72, 1531–1558 (2005).CrossRef S. N. Wosu, D. Hui, and P. K. Dutta, “Dynamic mixed-mode I/II delamination fracture and energy release rate of unidirectional graphite/epoxy composites,” Eng. Fract. Mech., 72, 1531–1558 (2005).CrossRef
10.
Zurück zum Zitat R. A. Jurf and R. B. Pipes, “Interlaminar fracture of composite materials,” J. Compos. Mater., 16, 386–395 (1982).CrossRef R. A. Jurf and R. B. Pipes, “Interlaminar fracture of composite materials,” J. Compos. Mater., 16, 386–395 (1982).CrossRef
11.
Zurück zum Zitat B. A. Latella and T. Liu, “The initiation and propagation of thermal shock cracks in graphite,” Carbon, 44, 3043–3048 (2006).CrossRef B. A. Latella and T. Liu, “The initiation and propagation of thermal shock cracks in graphite,” Carbon, 44, 3043–3048 (2006).CrossRef
12.
Zurück zum Zitat S. Sato, K. Kawamata, H. Awaji, et al., “Thermal shock resistance and fracture toughness during the graphitization process,” Carbon, 19, 111–118 (1981).CrossRef S. Sato, K. Kawamata, H. Awaji, et al., “Thermal shock resistance and fracture toughness during the graphitization process,” Carbon, 19, 111–118 (1981).CrossRef
13.
Zurück zum Zitat S. Sato, H. Awaji, and H. Akuzawa, “Fracture toughness of reactor graphite at high temperature,” Carbon, 16, 95–102 (1978).CrossRef S. Sato, H. Awaji, and H. Akuzawa, “Fracture toughness of reactor graphite at high temperature,” Carbon, 16, 95–102 (1978).CrossRef
14.
Zurück zum Zitat R. H. Knibbs, “Fracture in polycrystalline graphite,” J. Nucl. Mater., 24, 174–187 (1967).CrossRef R. H. Knibbs, “Fracture in polycrystalline graphite,” J. Nucl. Mater., 24, 174–187 (1967).CrossRef
15.
Zurück zum Zitat B. Allard, D. Rouby, G. Fantozzi, et al., “Fracture behaviour of carbon materials,” Carbon, 29, 457–468 (1991).CrossRef B. Allard, D. Rouby, G. Fantozzi, et al., “Fracture behaviour of carbon materials,” Carbon, 29, 457–468 (1991).CrossRef
16.
Zurück zum Zitat T. D. Burchell, “A microstructurally based fracture model for polygranular graphites,” Carbon, 34, 297–316 (1996).CrossRef T. D. Burchell, “A microstructurally based fracture model for polygranular graphites,” Carbon, 34, 297–316 (1996).CrossRef
17.
Zurück zum Zitat E. V. Lomakin, A. I. Zobnin, and A. V. Berezin, “Finding the fracture toughness characteristics of graphite materials in plane strain,” Strength Mater., 7, No. 4, 484–487 (1975).CrossRef E. V. Lomakin, A. I. Zobnin, and A. V. Berezin, “Finding the fracture toughness characteristics of graphite materials in plane strain,” Strength Mater., 7, No. 4, 484–487 (1975).CrossRef
18.
Zurück zum Zitat H. H. W. Losty and J. S. Orchard, “The strength of graphite,” in: Proc. of the Fifth Conf. on Carbon, Pennsylvania State University, MacMillan, New York (1962), 1, pp. 537–546. H. H. W. Losty and J. S. Orchard, “The strength of graphite,” in: Proc. of the Fifth Conf. on Carbon, Pennsylvania State University, MacMillan, New York (1962), 1, pp. 537–546.
19.
Zurück zum Zitat W. L. Greenstreet, Mechanical Properties of Artificial Graphites – A Survey Report, Oak Ridge, TN (1968).CrossRef W. L. Greenstreet, Mechanical Properties of Artificial Graphites – A Survey Report, Oak Ridge, TN (1968).CrossRef
20.
Zurück zum Zitat W. L. Greenstreet, J. E. Smith, and G. T. Yahr, “Mechanical properties of EGCR-type AGOT graphite,” Carbon, 7, 15–45 (1969).CrossRef W. L. Greenstreet, J. E. Smith, and G. T. Yahr, “Mechanical properties of EGCR-type AGOT graphite,” Carbon, 7, 15–45 (1969).CrossRef
21.
Zurück zum Zitat N. N. Nemeth and R. L. Bratton, Statistical Models of Fracture Relevant to Nuclear-Grade Graphite: Review and Recommendations, NASA/TM–2011-215805, Cleveland, Ohio (2011). N. N. Nemeth and R. L. Bratton, Statistical Models of Fracture Relevant to Nuclear-Grade Graphite: Review and Recommendations, NASA/TM–2011-215805, Cleveland, Ohio (2011).
22.
Zurück zum Zitat M. Mostafavi and T. J. Marrow, “In situ observation of crack nuclei in poly-granular graphite under ring-on-ring equi-biaxial and flexural loading,” Eng. Fract. Mech., 78, 1756–1770 (2011).CrossRef M. Mostafavi and T. J. Marrow, “In situ observation of crack nuclei in poly-granular graphite under ring-on-ring equi-biaxial and flexural loading,” Eng. Fract. Mech., 78, 1756–1770 (2011).CrossRef
23.
Zurück zum Zitat M. Mostafavi and T. J. Marrow, “Quantitative in situ study of short crack propagation in polygranular graphite by digital image correlation,” Fatigue Fract. Eng. Mater. Struct., 35, 695–707 (2012).CrossRef M. Mostafavi and T. J. Marrow, “Quantitative in situ study of short crack propagation in polygranular graphite by digital image correlation,” Fatigue Fract. Eng. Mater. Struct., 35, 695–707 (2012).CrossRef
24.
Zurück zum Zitat M. Mostafavi, M. J. J. Schmidt, B. J. Marsden, and T. J. Marrow, “Fracture behaviour of an anisotropic polygranular graphite (PGA),” Mater. Sci. Eng. A, 558, 265–277 (2012).CrossRef M. Mostafavi, M. J. J. Schmidt, B. J. Marsden, and T. J. Marrow, “Fracture behaviour of an anisotropic polygranular graphite (PGA),” Mater. Sci. Eng. A, 558, 265–277 (2012).CrossRef
25.
Zurück zum Zitat M. Mostafavi, S. A. McDonald, P. M. Mummery, and T. J. Marrow, “Observation and quantification of three-dimensional crack propagation in poly-granular graphite,” Eng. Fract. Mech., 110, 410–420 (2013).CrossRef M. Mostafavi, S. A. McDonald, P. M. Mummery, and T. J. Marrow, “Observation and quantification of three-dimensional crack propagation in poly-granular graphite,” Eng. Fract. Mech., 110, 410–420 (2013).CrossRef
26.
Zurück zum Zitat M. Mostafavi, S. A. McDonald, H. Çetinel, et al., “Flexural strength and defect behaviour of polygranular graphite under different states of stress,” Carbon, 59, 325–336 (2013).CrossRef M. Mostafavi, S. A. McDonald, H. Çetinel, et al., “Flexural strength and defect behaviour of polygranular graphite under different states of stress,” Carbon, 59, 325–336 (2013).CrossRef
27.
Zurück zum Zitat M. R. Ayatollahi, F. Berto, and P. Lazzarin, “Mixed mode brittle fracture of sharp and blunt V-notches in polycrystalline graphite,” Carbon, 49, 2465–2474 (2011).CrossRef M. R. Ayatollahi, F. Berto, and P. Lazzarin, “Mixed mode brittle fracture of sharp and blunt V-notches in polycrystalline graphite,” Carbon, 49, 2465–2474 (2011).CrossRef
28.
Zurück zum Zitat M. R. Ayatollahi and A. R. Torabi, “Tensile fracture in notched polycrystalline graphite specimens,” Carbon, 48, 2255–2265 (2010).CrossRef M. R. Ayatollahi and A. R. Torabi, “Tensile fracture in notched polycrystalline graphite specimens,” Carbon, 48, 2255–2265 (2010).CrossRef
29.
Zurück zum Zitat D. K. Bazaj and E. E. Cox, “Stress-concentration factors and notch-sensitivity of graphite,” Carbon, 7, 689–697 (1969).CrossRef D. K. Bazaj and E. E. Cox, “Stress-concentration factors and notch-sensitivity of graphite,” Carbon, 7, 689–697 (1969).CrossRef
30.
Zurück zum Zitat H. Kawakami, “Notch sensitivity of graphite materials for VHTR,” J. Atom. Energ. Soc. Jpn., 27, 357–364 (1985).CrossRef H. Kawakami, “Notch sensitivity of graphite materials for VHTR,” J. Atom. Energ. Soc. Jpn., 27, 357–364 (1985).CrossRef
31.
Zurück zum Zitat F. Berto, P. Lazzarin, and M. R. Ayatollahi, “Brittle fracture of sharp and blunt V-notches in isostatic graphite under torsion loading,” Carbon, 50, 1942–1952 (2012).CrossRef F. Berto, P. Lazzarin, and M. R. Ayatollahi, “Brittle fracture of sharp and blunt V-notches in isostatic graphite under torsion loading,” Carbon, 50, 1942–1952 (2012).CrossRef
32.
Zurück zum Zitat F. Berto, P. Lazzarin, and M. R. Ayatollahi, “Brittle fracture of sharp and blunt V-notches in isostatic graphite under pure compression loading,” Carbon, 63, 101–116 (2013).CrossRef F. Berto, P. Lazzarin, and M. R. Ayatollahi, “Brittle fracture of sharp and blunt V-notches in isostatic graphite under pure compression loading,” Carbon, 63, 101–116 (2013).CrossRef
33.
Zurück zum Zitat P. Lazzarin, F. Berto, and M. R. Ayatollahi, “Brittle failure of inclined key-hole notches in isostatic graphite under in-plane mixed mode loading,” Fatigue Fract. Eng. Mater. Struct., 36, 942–955 (2013).CrossRef P. Lazzarin, F. Berto, and M. R. Ayatollahi, “Brittle failure of inclined key-hole notches in isostatic graphite under in-plane mixed mode loading,” Fatigue Fract. Eng. Mater. Struct., 36, 942–955 (2013).CrossRef
34.
Zurück zum Zitat F. Berto, P. Lazzarin, and C. Marangon, “Brittle fracture of U-notched graphite plates under mixed mode loading,” Mater. Des., 41, 421–432 (2012).CrossRef F. Berto, P. Lazzarin, and C. Marangon, “Brittle fracture of U-notched graphite plates under mixed mode loading,” Mater. Des., 41, 421–432 (2012).CrossRef
35.
Zurück zum Zitat G. C. Sih, “Strain-energy-density factor applied to mixed mode crack problems,” Int. J. Fracture, 10, 305–321 (1974).CrossRef G. C. Sih, “Strain-energy-density factor applied to mixed mode crack problems,” Int. J. Fracture, 10, 305–321 (1974).CrossRef
36.
Zurück zum Zitat R. Brighenti and A. Carpinteri, “Buckling and fracture behaviour of cracked thin plates under shear loading,” Mater. Des., 32, 1347–1355 (2011).CrossRef R. Brighenti and A. Carpinteri, “Buckling and fracture behaviour of cracked thin plates under shear loading,” Mater. Des., 32, 1347–1355 (2011).CrossRef
37.
Zurück zum Zitat A. Carpinteri, C. Ronchei, and S. Vantadori, “Stress intensity factors and fatigue growth of surface cracks in notched shells and round bars: two decades of research work,” Fatigue Fract. Eng. Mater. Struct., 36, 1164–1177 (2013).CrossRef A. Carpinteri, C. Ronchei, and S. Vantadori, “Stress intensity factors and fatigue growth of surface cracks in notched shells and round bars: two decades of research work,” Fatigue Fract. Eng. Mater. Struct., 36, 1164–1177 (2013).CrossRef
38.
Zurück zum Zitat R. Brighenti and A. Carpinteri, “Surface cracks in fatigued structural components: a review,” Fatigue Fract. Eng. Mater. Struct., 36, 1209–1222 (2013).CrossRef R. Brighenti and A. Carpinteri, “Surface cracks in fatigued structural components: a review,” Fatigue Fract. Eng. Mater. Struct., 36, 1209–1222 (2013).CrossRef
39.
Zurück zum Zitat R. Brighenti, A. Carpinteri, and A. Spagnoli, “Influence of material microvoids and heterogeneities on fatigue crack propagation,” Acta Mech., 225, 3123–3135 (2014).CrossRef R. Brighenti, A. Carpinteri, and A. Spagnoli, “Influence of material microvoids and heterogeneities on fatigue crack propagation,” Acta Mech., 225, 3123–3135 (2014).CrossRef
40.
Zurück zum Zitat R. Brighenti and A. Carpinteri, “Some considerations on failure of solids and liquids,” Strength Mater., 42, No. 2, 154–166 (2010).CrossRef R. Brighenti and A. Carpinteri, “Some considerations on failure of solids and liquids,” Strength Mater., 42, No. 2, 154–166 (2010).CrossRef
41.
Zurück zum Zitat R. Brighenti, A. Carpinteri, and S. Vantadori, “Fatigue life assessment under a complex multiaxial load history: an approach based on damage mechanics,” Fatigue Fract. Eng. Mater. Struct., 35, 141–153 (2012).CrossRef R. Brighenti, A. Carpinteri, and S. Vantadori, “Fatigue life assessment under a complex multiaxial load history: an approach based on damage mechanics,” Fatigue Fract. Eng. Mater. Struct., 35, 141–153 (2012).CrossRef
42.
Zurück zum Zitat R. Brighenti and A. Carpinteri, “A notch multiaxial-fatigue approach based on damage mechanics,” Int. J. Fatigue, 39, 122–133 (2012).CrossRef R. Brighenti and A. Carpinteri, “A notch multiaxial-fatigue approach based on damage mechanics,” Int. J. Fatigue, 39, 122–133 (2012).CrossRef
43.
Zurück zum Zitat S. Vantadori, A. Carpinteri, and D. Scorza, “Simplified analysis of fracture behaviour of a Francis hydraulic turbine runner blade,” Fatigue Fract. Eng. Mater. Struct., 36, 679–688 (2013).CrossRef S. Vantadori, A. Carpinteri, and D. Scorza, “Simplified analysis of fracture behaviour of a Francis hydraulic turbine runner blade,” Fatigue Fract. Eng. Mater. Struct., 36, 679–688 (2013).CrossRef
44.
Zurück zum Zitat P. Lazzarin and R. Zambardi, “A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches,” Int. J. Fract., 112, 275–298 (2001).CrossRef P. Lazzarin and R. Zambardi, “A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches,” Int. J. Fract., 112, 275–298 (2001).CrossRef
45.
Zurück zum Zitat P. Lazzarin and F. Berto, “Some expressions for the strain energy in a finite volume surrounding the root of blunt V-notches,” Int. J. Fract., 135, 161–185 (2005).CrossRef P. Lazzarin and F. Berto, “Some expressions for the strain energy in a finite volume surrounding the root of blunt V-notches,” Int. J. Fract., 135, 161–185 (2005).CrossRef
46.
Zurück zum Zitat F. Berto and P. Lazzarin, “Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches,” Mater. Sci. Eng. R Rep., 75, 1–48 (2014).CrossRef F. Berto and P. Lazzarin, “Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches,” Mater. Sci. Eng. R Rep., 75, 1–48 (2014).CrossRef
47.
Zurück zum Zitat F. Berto, A. Campagnolo, M. Elices, and P. Lazzarin, “A synthesis of polymethyl-methacrylate data from U-notched specimens and V-notches with end holes by means of local energy,” Mater. Des., 49, 826–833 (2013).CrossRef F. Berto, A. Campagnolo, M. Elices, and P. Lazzarin, “A synthesis of polymethyl-methacrylate data from U-notched specimens and V-notches with end holes by means of local energy,” Mater. Des., 49, 826–833 (2013).CrossRef
48.
Zurück zum Zitat P. Lazzarin, A. Campagnolo, and F. Berto, “A comparison among some recent energy- and stress-based criteria for the fracture assessment of sharp V-notched components under mode I loading,” Theor. Appl. Fract. Mech., 71, 21–30 (2014).CrossRef P. Lazzarin, A. Campagnolo, and F. Berto, “A comparison among some recent energy- and stress-based criteria for the fracture assessment of sharp V-notched components under mode I loading,” Theor. Appl. Fract. Mech., 71, 21–30 (2014).CrossRef
49.
Zurück zum Zitat A. R. Torabi, A. Campagnolo, and F. Berto, “Mode II brittle fracture assessment of key-hole notches by means of the local energy,” J. Test. Eval., 44, No. 3. Paper in press, DOI: 10.1520/JTE20140295. A. R. Torabi, A. Campagnolo, and F. Berto, “Mode II brittle fracture assessment of key-hole notches by means of the local energy,” J. Test. Eval., 44, No. 3. Paper in press, DOI: 10.​1520/​JTE20140295.
50.
Zurück zum Zitat D. Radaj, F. Berto, and P. Lazzarin, “Local fatigue strength parameters for welded joints based on strain energy density with inclusion of small-size notches,” Eng. Fract. Mech., 76, 1109–1130 (2009).CrossRef D. Radaj, F. Berto, and P. Lazzarin, “Local fatigue strength parameters for welded joints based on strain energy density with inclusion of small-size notches,” Eng. Fract. Mech., 76, 1109–1130 (2009).CrossRef
51.
Zurück zum Zitat P. Lazzarin, P. Livieri, F. Berto, and M. Zappalorto, “Local strain energy density and fatigue strength of welded joints under uniaxial and multiaxial loading,” Eng. Fract. Mech., 75, 1875–1889 (2008).CrossRef P. Lazzarin, P. Livieri, F. Berto, and M. Zappalorto, “Local strain energy density and fatigue strength of welded joints under uniaxial and multiaxial loading,” Eng. Fract. Mech., 75, 1875–1889 (2008).CrossRef
52.
Zurück zum Zitat F. Berto, P. Lazzarin, and P. Gallo, “High-temperature fatigue strength of a copper- cobalt-beryllium alloy,” J. Strain Anal. Eng. Des., 49, 244–256 (2013).CrossRef F. Berto, P. Lazzarin, and P. Gallo, “High-temperature fatigue strength of a copper- cobalt-beryllium alloy,” J. Strain Anal. Eng. Des., 49, 244–256 (2013).CrossRef
53.
Zurück zum Zitat F. Berto, P. Gallo, P. Lazzarin, “High temperature fatigue tests of un-notched and notched specimens made of 40CrMoV13.9 steel,” Mater. Des., 63, 609–619 (2014).CrossRef F. Berto, P. Gallo, P. Lazzarin, “High temperature fatigue tests of un-notched and notched specimens made of 40CrMoV13.9 steel,” Mater. Des., 63, 609–619 (2014).CrossRef
54.
Zurück zum Zitat F. Berto, P. Lazzarin, and C. Marangon, “Fatigue strength of notched specimens made of 40CrMoV13.9 under multiaxial loading,” Mater. Des., 54, 57–66 (2014).CrossRef F. Berto, P. Lazzarin, and C. Marangon, “Fatigue strength of notched specimens made of 40CrMoV13.9 under multiaxial loading,” Mater. Des., 54, 57–66 (2014).CrossRef
55.
Zurück zum Zitat F. Berto, A. Campagnolo, and P. Lazzarin, “Fatigue strength of severely notched specimens made of Ti-6Al-4V under multiaxial loading,” Fatigue Fract. Eng. Mater. Struct., 38, 503–517 (2015).CrossRef F. Berto, A. Campagnolo, and P. Lazzarin, “Fatigue strength of severely notched specimens made of Ti-6Al-4V under multiaxial loading,” Fatigue Fract. Eng. Mater. Struct., 38, 503–517 (2015).CrossRef
56.
Zurück zum Zitat P. Lazzarin, F. Berto, and M. Zappalorto, “Rapid calculations of notch stress intensity factors based on averaged strain energy density from coarse meshes: theoretical bases and applications,” Int. J. Fatigue, 32, 1559–1567 (2010).CrossRef P. Lazzarin, F. Berto, and M. Zappalorto, “Rapid calculations of notch stress intensity factors based on averaged strain energy density from coarse meshes: theoretical bases and applications,” Int. J. Fatigue, 32, 1559–1567 (2010).CrossRef
57.
Zurück zum Zitat L. P. Pook, F. Berto, A. Campagnolo, and P. Lazzarin, “Coupled fracture mode of a cracked disc under anti-plane loading,” Eng. Fract. Mech., 128, 22–36 (2014).CrossRef L. P. Pook, F. Berto, A. Campagnolo, and P. Lazzarin, “Coupled fracture mode of a cracked disc under anti-plane loading,” Eng. Fract. Mech., 128, 22–36 (2014).CrossRef
58.
Zurück zum Zitat A. Campagnolo, F. Berto, and P. Lazzarin, “The effects of different boundary conditions on three-dimensional cracked discs under anti-plane loading”, Eur. J. Mech. – A/Solids, 50, 77–86 (2015).CrossRef A. Campagnolo, F. Berto, and P. Lazzarin, “The effects of different boundary conditions on three-dimensional cracked discs under anti-plane loading”, Eur. J. Mech. – A/Solids, 50, 77–86 (2015).CrossRef
59.
Zurück zum Zitat F. J. Gómez, M. Elices, F. Berto, and P. Lazzarin, “Local strain energy to assess the static failure of U-notches in plates under mixed mode loading,” Int. J. Fract., 145, 29–45 (2007).CrossRef F. J. Gómez, M. Elices, F. Berto, and P. Lazzarin, “Local strain energy to assess the static failure of U-notches in plates under mixed mode loading,” Int. J. Fract., 145, 29–45 (2007).CrossRef
60.
Zurück zum Zitat F. Berto, P. Lazzarin, F. J. Gómez, and M. Elices, “Fracture assessment of U-notches under mixed mode loading: two procedures based on the ‘equivalent local mode I’ concept,” Int. J. Fract., 148, 415–433 (2007).CrossRef F. Berto, P. Lazzarin, F. J. Gómez, and M. Elices, “Fracture assessment of U-notches under mixed mode loading: two procedures based on the ‘equivalent local mode I’ concept,” Int. J. Fract., 148, 415–433 (2007).CrossRef
61.
Zurück zum Zitat K. R. Raju, “Effect of depth of side grooves in double torsion specimens on plane strain fracture toughness,” Int. J. Fracture, 17, R189–R190 (1981).CrossRef K. R. Raju, “Effect of depth of side grooves in double torsion specimens on plane strain fracture toughness,” Int. J. Fracture, 17, R189–R190 (1981).CrossRef
62.
Zurück zum Zitat X. Zheng, K. Zhao, H. Wang, and J. Yan, “Failure criterion with given survivability for ceramic notched elements under combined tension/torsion,” Mater. Sci. Eng. A, 357, 196–202 (2003).CrossRef X. Zheng, K. Zhao, H. Wang, and J. Yan, “Failure criterion with given survivability for ceramic notched elements under combined tension/torsion,” Mater. Sci. Eng. A, 357, 196–202 (2003).CrossRef
63.
Zurück zum Zitat X. L. Zheng, K. Zhao, and J. H. Yan, “Fracture and strength of notched elements of brittle material under torsion,” Mater. Sci. Technol., 21, 539–545 (2005).CrossRef X. L. Zheng, K. Zhao, and J. H. Yan, “Fracture and strength of notched elements of brittle material under torsion,” Mater. Sci. Technol., 21, 539–545 (2005).CrossRef
64.
Zurück zum Zitat B. Cotterell, “Brittle fracture in compression,” Int. J. Fract. Mech., 8, 195–208 (1972).CrossRef B. Cotterell, “Brittle fracture in compression,” Int. J. Fract. Mech., 8, 195–208 (1972).CrossRef
65.
Zurück zum Zitat E. Hoek and Z. T. Bieniawski, “Brittle fracture propagation in rock under compression,” Int. J. Fract. Mech., 1, 137–155 (1965). E. Hoek and Z. T. Bieniawski, “Brittle fracture propagation in rock under compression,” Int. J. Fract. Mech., 1, 137–155 (1965).
66.
Zurück zum Zitat J. F. Bell, The Experimental Foundations of Solid Mechanics, in: S. Flügge (Ed.), Encyclopedia of Physics, Vol. VIa/1, Springer-Verlag, Berlin–Heidelberg–New York (1973). J. F. Bell, The Experimental Foundations of Solid Mechanics, in: S. Flügge (Ed.), Encyclopedia of Physics, Vol. VIa/1, Springer-Verlag, Berlin–Heidelberg–New York (1973).
67.
Zurück zum Zitat E. Z. Lajtai, “Brittle fracture in compression,” Int. J. Fracture, 10, 525–536 (1974).CrossRef E. Z. Lajtai, “Brittle fracture in compression,” Int. J. Fracture, 10, 525–536 (1974).CrossRef
68.
Zurück zum Zitat E. Z. Lajtai, B. J. Carter, and M. L. Ayari, “Criteria for brittle fracture in compression,” Eng. Fract. Mech., 37, 59–74 (1990).CrossRef E. Z. Lajtai, B. J. Carter, and M. L. Ayari, “Criteria for brittle fracture in compression,” Eng. Fract. Mech., 37, 59–74 (1990).CrossRef
69.
Zurück zum Zitat E. Z. Wang and N. G. Shrive, “Brittle fracture in compression: Mechanisms, models and criteria,” Eng. Fract. Mech., 52, 1107–1126 (1995).CrossRef E. Z. Wang and N. G. Shrive, “Brittle fracture in compression: Mechanisms, models and criteria,” Eng. Fract. Mech., 52, 1107–1126 (1995).CrossRef
70.
Zurück zum Zitat E. J. Dzik and E. Z. Lajtai, “Primary fracture propagation from circular cavities loaded in compression,” Int. J. Fract., 79, 49–64 (1996).CrossRef E. J. Dzik and E. Z. Lajtai, “Primary fracture propagation from circular cavities loaded in compression,” Int. J. Fract., 79, 49–64 (1996).CrossRef
71.
Zurück zum Zitat I. Vardoulakis, J. F. Labuz, E. Papamichos, and J. Tronvoll, “Continuum fracture mechanics of uniaxial compression on brittle materials,” Int. J. Solids Struct., 35, 4313–4335 (1998).CrossRef I. Vardoulakis, J. F. Labuz, E. Papamichos, and J. Tronvoll, “Continuum fracture mechanics of uniaxial compression on brittle materials,” Int. J. Solids Struct., 35, 4313–4335 (1998).CrossRef
72.
Zurück zum Zitat E. Beltrami, “Sulle condizioni di resistenza dei corpi elastici,” Il Nuovo Cimento, 18, 145–155 (in Italian) (1885). E. Beltrami, “Sulle condizioni di resistenza dei corpi elastici,” Il Nuovo Cimento, 18, 145–155 (in Italian) (1885).
73.
Zurück zum Zitat F. Schleicher, “Der Spannungszustand an der Fliessgrenze (Plastizitätsbedingung),” Z. Angew. Math. Mech., 6, 199–216 (1926).CrossRef F. Schleicher, “Der Spannungszustand an der Fliessgrenze (Plastizitätsbedingung),” Z. Angew. Math. Mech., 6, 199–216 (1926).CrossRef
74.
Zurück zum Zitat F. Stassi-D’Alia, Un Paraboloide di Rivoluzione Quale Condizione di Plasticita, L’Ingegnere (1951). F. Stassi-D’Alia, Un Paraboloide di Rivoluzione Quale Condizione di Plasticita, L’Ingegnere (1951).
75.
Zurück zum Zitat F. Stassi-D’Alia, Teoria della Plasticita e sue Applicazioni, Palermo (1958). F. Stassi-D’Alia, Teoria della Plasticita e sue Applicazioni, Palermo (1958).
76.
Zurück zum Zitat F. Berto, P. Lazzarin, and D. Radaj, “Fictitious notch rounding concept applied to sharp V-notches: evaluation of the microstructural support factor for different failure hypotheses. Part I: Basic stress equations,” Eng. Fract. Mech., 75, 3060–3072 (2008).CrossRef F. Berto, P. Lazzarin, and D. Radaj, “Fictitious notch rounding concept applied to sharp V-notches: evaluation of the microstructural support factor for different failure hypotheses. Part I: Basic stress equations,” Eng. Fract. Mech., 75, 3060–3072 (2008).CrossRef
Metadaten
Titel
Brittle Failure of Graphite Weakened by V-Notches: A Review of Some Recent Results Under Different Loading Modes
verfasst von
F. Berto
A. Campagnolo
P. Gallo
Publikationsdatum
01.05.2015
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 3/2015
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-015-9682-7

Weitere Artikel der Ausgabe 3/2015

Strength of Materials 3/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.