Skip to main content
Erschienen in: Strength of Materials 4/2017

13.11.2017

Fem Simulation of the Cross-Wedge Rolling Process for a Stepped Shaft

verfasst von: Z. Pater, J. Tomczak, T. Bulzak

Erschienen in: Strength of Materials | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper presents the results of numerical modeling of a cross-wedge rolling process for producing a stepped shaft. The modeling was performed with commercial software Forge NxT 1.1 using the finite element method. The numerical analysis enabled the determination of changes in the shape of the workpiece, effective strain, damage function and temperature distributions, as well as variations in the forces and torque acting on the tool. The numerical results demonstrate that personal computers can today be used to model even the most difficult cases of the cross-wedge rolling process, in which complex shapes of the tools and thermal phenomena occurring during the forming process have to be taken into consideration.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Z. Pater, “Cross-wedge rolling,” in: S. Hashmi (Ed.), Comprehensive Materials Processing, Vol. 3, Elsevier (2014), pp. 211–279. Z. Pater, “Cross-wedge rolling,” in: S. Hashmi (Ed.), Comprehensive Materials Processing, Vol. 3, Elsevier (2014), pp. 211–279.
2.
Zurück zum Zitat X. P. Fu and T. A. Dean, “Past developments, current applications and trends in the cross wedge rolling process,” Int. J. Mach. Tool. Manu., 33, No. 2, 367–400 (1993).CrossRef X. P. Fu and T. A. Dean, “Past developments, current applications and trends in the cross wedge rolling process,” Int. J. Mach. Tool. Manu., 33, No. 2, 367–400 (1993).CrossRef
3.
Zurück zum Zitat Y. Dong, K. A. Tagavi, and M. R. Lovell, “Analysis of interfacial slip in cross-wedge rolling: a numerical and phenomenological investigation,” J. Mater. Process. Tech., 97, Nos. 1–3, 44–53 (2000). Y. Dong, K. A. Tagavi, and M. R. Lovell, “Analysis of interfacial slip in cross-wedge rolling: a numerical and phenomenological investigation,” J. Mater. Process. Tech., 97, Nos. 1–3, 44–53 (2000).
4.
Zurück zum Zitat M. R. Lovell, “Evaluation of critical interfacial friction in cross wedge rolling,” J. Tribol., 123, No. 2, 424–429 (2001).CrossRef M. R. Lovell, “Evaluation of critical interfacial friction in cross wedge rolling,” J. Tribol., 123, No. 2, 424–429 (2001).CrossRef
5.
Zurück zum Zitat Y. Dong, M. Lovell, and K. Tagavi, “Analysis of interfacial slip in cross-wedge rolling: an experimentally verified finite-element model,” J. Mater. Process. Tech., 80–81, 273–281 (1998).CrossRef Y. Dong, M. Lovell, and K. Tagavi, “Analysis of interfacial slip in cross-wedge rolling: an experimentally verified finite-element model,” J. Mater. Process. Tech., 80–81, 273–281 (1998).CrossRef
6.
Zurück zum Zitat Y. Dong, K. A. Tagavi, M. R. Lovell, and Z. Deng, “Analysis of stress in cross wedge rolling with application to failure,” Int. J. Mech. Sci., 42, 1233–1253 (2000).CrossRef Y. Dong, K. A. Tagavi, M. R. Lovell, and Z. Deng, “Analysis of stress in cross wedge rolling with application to failure,” Int. J. Mech. Sci., 42, 1233–1253 (2000).CrossRef
7.
Zurück zum Zitat Z. Deng, M. R. Lovell, and K. A. Tagavi, “Influence of material properties and forming velocity on the interfacial slip characteristics of cross wedge rolling,” J. Manuf. Sci. Eng., 123, 647–653 (2001).CrossRef Z. Deng, M. R. Lovell, and K. A. Tagavi, “Influence of material properties and forming velocity on the interfacial slip characteristics of cross wedge rolling,” J. Manuf. Sci. Eng., 123, 647–653 (2001).CrossRef
8.
Zurück zum Zitat S. G. Choi, D. J. Yoon, G. A. Lee, et al., “Cold rolling technique for eliminating cutting process in manufacturing precise product using non-heat-treated micro alloys,” Mater. Sci. Forum, 475–479, 3235–3238 (2005). S. G. Choi, D. J. Yoon, G. A. Lee, et al., “Cold rolling technique for eliminating cutting process in manufacturing precise product using non-heat-treated micro alloys,” Mater. Sci. Forum, 475–479, 3235–3238 (2005).
9.
Zurück zum Zitat Q. Li and M. Lovell, “On the interfacial friction of a two-roll CWR process,” J. Mater. Process. Tech., 160, 245–256 (2005).CrossRef Q. Li and M. Lovell, “On the interfacial friction of a two-roll CWR process,” J. Mater. Process. Tech., 160, 245–256 (2005).CrossRef
10.
Zurück zum Zitat S. Urankar, M. Lovell, C. Morrow, et al., “Establishment of failure conditions for cross-wedge rolling of hollow shafts,” J. Mater. Process. Tech., 177, 545–549 (2006).CrossRef S. Urankar, M. Lovell, C. Morrow, et al., “Establishment of failure conditions for cross-wedge rolling of hollow shafts,” J. Mater. Process. Tech., 177, 545–549 (2006).CrossRef
11.
Zurück zum Zitat S. Urankar, M. Lovell, C. Morrow, et al., “Development of a critical friction model for cross wedge rolling hollow shafts,” J. Mater. Process. Tech., 177, 539–544 (2006).CrossRef S. Urankar, M. Lovell, C. Morrow, et al., “Development of a critical friction model for cross wedge rolling hollow shafts,” J. Mater. Process. Tech., 177, 539–544 (2006).CrossRef
12.
Zurück zum Zitat S. Xuedao, L. Chuanmin, Z. Jing, and H. Zhenghuan, “Theoretical and experimental study of varying rule of rolling-moment about cross-wedge rolling,” J. Mater. Process. Tech., 187–188, 752–756 (2007). S. Xuedao, L. Chuanmin, Z. Jing, and H. Zhenghuan, “Theoretical and experimental study of varying rule of rolling-moment about cross-wedge rolling,” J. Mater. Process. Tech., 187–188, 752–756 (2007).
13.
Zurück zum Zitat H. W. Lee, G. A. Lee, D. J. Yoon, et al., “Optimization of design parameters using a response surface method in a cold cross-wedge rolling,” J. Mater. Process. Tech., 201, 112–117 (2008).CrossRef H. W. Lee, G. A. Lee, D. J. Yoon, et al., “Optimization of design parameters using a response surface method in a cold cross-wedge rolling,” J. Mater. Process. Tech., 201, 112–117 (2008).CrossRef
14.
Zurück zum Zitat X. Shu, X. Wei, Ch. Li, and Z. Hu, “The influence rules of stress about technical parameters on synchronous rolling railway axis with multi-wedge cross-wedge rolling,” Appl. Mech. Mater., 37–38, 1482–1488 (2010).CrossRef X. Shu, X. Wei, Ch. Li, and Z. Hu, “The influence rules of stress about technical parameters on synchronous rolling railway axis with multi-wedge cross-wedge rolling,” Appl. Mech. Mater., 37–38, 1482–1488 (2010).CrossRef
15.
Zurück zum Zitat J. Zhao and L. Lu, “The application of multi-wedge cross wedge rolling forming long shaft technology,” Appl. Mech. Mater., 101–102, 1002–1005 (2012). J. Zhao and L. Lu, “The application of multi-wedge cross wedge rolling forming long shaft technology,” Appl. Mech. Mater., 101–102, 1002–1005 (2012).
16.
Zurück zum Zitat V. Y. Shchukin, G. V. Kozhevnikova, and V. V. Petrenko, “Cross-wedge rolling at Pti NAS Belarus,” Appl. Mech. Mater., 201–202, 1198–1202 (2012).CrossRef V. Y. Shchukin, G. V. Kozhevnikova, and V. V. Petrenko, “Cross-wedge rolling at Pti NAS Belarus,” Appl. Mech. Mater., 201–202, 1198–1202 (2012).CrossRef
17.
Zurück zum Zitat W. Peng and K. Zhang, “Theoretical research of the axial force about cross wedge rolling,” Key Eng. Mater., 433, 27–32 (2010).CrossRef W. Peng and K. Zhang, “Theoretical research of the axial force about cross wedge rolling,” Key Eng. Mater., 433, 27–32 (2010).CrossRef
18.
Zurück zum Zitat X. Xing and X. Shu, “Finite element analysis of stress and strain in two-wedge cross wedge rolling step-shaft part,” Mater. Sci. Forum, 575–578, 255–260 (2008).CrossRef X. Xing and X. Shu, “Finite element analysis of stress and strain in two-wedge cross wedge rolling step-shaft part,” Mater. Sci. Forum, 575–578, 255–260 (2008).CrossRef
19.
Zurück zum Zitat C. Yang, K. Zhang, and Z. Hu, “Development of central minute cavity in the workpiece of cross wedge rolling,” Appl. Mech. Mater., 215–216, 766–770 (2012).CrossRef C. Yang, K. Zhang, and Z. Hu, “Development of central minute cavity in the workpiece of cross wedge rolling,” Appl. Mech. Mater., 215–216, 766–770 (2012).CrossRef
20.
Zurück zum Zitat X. Shu, B. Sun, and M. Xiao, “Influence regularities of axial force of cross wedge rolling symmetric shaft-parts about technical parameters,” Adv. Mater. Res., 314–316, 589–593 (2011).CrossRef X. Shu, B. Sun, and M. Xiao, “Influence regularities of axial force of cross wedge rolling symmetric shaft-parts about technical parameters,” Adv. Mater. Res., 314–316, 589–593 (2011).CrossRef
21.
Zurück zum Zitat H. N. Lu, D. B. Wei, and Z. Y. Jiang, “Investigation on dimensional accuracy in micro cross wedge rolling of metals,” Key Eng. Mater., 622–623, 943–948 (2014).CrossRef H. N. Lu, D. B. Wei, and Z. Y. Jiang, “Investigation on dimensional accuracy in micro cross wedge rolling of metals,” Key Eng. Mater., 622–623, 943–948 (2014).CrossRef
22.
Zurück zum Zitat D. Wei, H. Lu, Z. Jiang, and K. Manabe, “Optimization of micro cross wedge rolling and surface morphology of micro stepped components,” Key Eng. Mater., 622–623, 964–969 (2014).CrossRef D. Wei, H. Lu, Z. Jiang, and K. Manabe, “Optimization of micro cross wedge rolling and surface morphology of micro stepped components,” Key Eng. Mater., 622–623, 964–969 (2014).CrossRef
23.
Zurück zum Zitat Z. Jiang, H. Lu, D. Wei, et al., “Finite element method analysis of micro cross wedge rolling of metals,” Procedia Engineer., 81, 2463–2468 (2014).CrossRef Z. Jiang, H. Lu, D. Wei, et al., “Finite element method analysis of micro cross wedge rolling of metals,” Procedia Engineer., 81, 2463–2468 (2014).CrossRef
24.
Zurück zum Zitat W. F. Peng, J. H. Zhang, G. X. Huang, et al., “Stress distribution during the cross-wedge rolling of composite 42CrMo/Q235 laminated shafts,” Int. J. Adv. Manuf. Tech., 83, 145–155 (2016).CrossRef W. F. Peng, J. H. Zhang, G. X. Huang, et al., “Stress distribution during the cross-wedge rolling of composite 42CrMo/Q235 laminated shafts,” Int. J. Adv. Manuf. Tech., 83, 145–155 (2016).CrossRef
25.
Zurück zum Zitat M. Wang, X. Li, and F. Du, “Analysis of metal forming in two-roll cross wedge rolling process using finite element method,” J. Iron Steel Res. Int., 16, No. 1, 38–43 (2009).CrossRef M. Wang, X. Li, and F. Du, “Analysis of metal forming in two-roll cross wedge rolling process using finite element method,” J. Iron Steel Res. Int., 16, No. 1, 38–43 (2009).CrossRef
26.
Zurück zum Zitat X. Li, M. Wang, and F. Du, “The coupling thermal-mechanical and microstructural model for the FEM simulation of cross wedge rolling,” J. Mater. Process. Tech., 172, 202–207 (2006).CrossRef X. Li, M. Wang, and F. Du, “The coupling thermal-mechanical and microstructural model for the FEM simulation of cross wedge rolling,” J. Mater. Process. Tech., 172, 202–207 (2006).CrossRef
27.
Zurück zum Zitat Y. Xiong, S. Sun, Y. Li, et al., “Effect of warm cross-wedge rolling on microstructure and mechanical property of high carbon steel rods,” Mater. Sci. Eng. A, 431, 152–157 (2006).CrossRef Y. Xiong, S. Sun, Y. Li, et al., “Effect of warm cross-wedge rolling on microstructure and mechanical property of high carbon steel rods,” Mater. Sci. Eng. A, 431, 152–157 (2006).CrossRef
28.
Zurück zum Zitat M. Wang, X. Li, F. Du, and Y. Zheng, “A coupled thermal-mechanical and microstructural simulations of the cross wedge rolling process and experimental verification,” Mater. Sci. Eng. A, 391, 305–312 (2005).CrossRef M. Wang, X. Li, F. Du, and Y. Zheng, “A coupled thermal-mechanical and microstructural simulations of the cross wedge rolling process and experimental verification,” Mater. Sci. Eng. A, 391, 305–312 (2005).CrossRef
29.
Zurück zum Zitat M. Wang, X. Li, F. Du, and Y. Zheng, “Hot deformation of austenite and prediction of microstructure evolution of cross-wedge rolling,” Mater. Sci. Eng. A, 379, 133–140 (2004). M. Wang, X. Li, F. Du, and Y. Zheng, “Hot deformation of austenite and prediction of microstructure evolution of cross-wedge rolling,” Mater. Sci. Eng. A, 379, 133–140 (2004).
30.
Zurück zum Zitat G. Fang, L. P. Lei, and P. Zeng, “Three-dimensional rigid-plastic finite element simulation for two-roll cross-wedge rolling process,” J. Mater. Process. Tech., 129, 245–249 (2002).CrossRef G. Fang, L. P. Lei, and P. Zeng, “Three-dimensional rigid-plastic finite element simulation for two-roll cross-wedge rolling process,” J. Mater. Process. Tech., 129, 245–249 (2002).CrossRef
31.
Zurück zum Zitat W. Regone, M. da Silva, and S. Button, “Numerical and experimental analysis of the microstruc¬tural evolution during cross wedge rolling of V-Ti microalloyed steel,” REM - Revista Escola de Minas (Metalurgia & Materials), 62, No. 4, 495–502 (2009). W. Regone, M. da Silva, and S. Button, “Numerical and experimental analysis of the microstruc¬tural evolution during cross wedge rolling of V-Ti microalloyed steel,” REM - Revista Escola de Minas (Metalurgia & Materials), 62, No. 4, 495–502 (2009).
32.
Zurück zum Zitat C. G. Xu, G. H. Liu, G. S. Ren, et al., “Finite element analysis of axial feed bar rolling,” Acta Metall. Sin. -Engl., 20, No. 4, 463–468 (2007).CrossRef C. G. Xu, G. H. Liu, G. S. Ren, et al., “Finite element analysis of axial feed bar rolling,” Acta Metall. Sin. -Engl., 20, No. 4, 463–468 (2007).CrossRef
33.
Zurück zum Zitat S. J. Mirhamadi, M. Hamedi, and S. Ajami, “Investigating the effects of cross wedge rolling tool parameters on formability of Nimonic® 80A and Nimonic® 115 superalloys,” Int. J. Adv. Manuf. Tech., 74, 995–1004 (2014).CrossRef S. J. Mirhamadi, M. Hamedi, and S. Ajami, “Investigating the effects of cross wedge rolling tool parameters on formability of Nimonic® 80A and Nimonic® 115 superalloys,” Int. J. Adv. Manuf. Tech., 74, 995–1004 (2014).CrossRef
34.
Zurück zum Zitat F. Shen, W. Yu, W. Peng, et al., “The strain analysis of plate cross wedge rolling of spiral shaft parts,” Adv. Mater. Res., 941–944, 1895–1900 (2014).CrossRef F. Shen, W. Yu, W. Peng, et al., “The strain analysis of plate cross wedge rolling of spiral shaft parts,” Adv. Mater. Res., 941–944, 1895–1900 (2014).CrossRef
35.
Zurück zum Zitat C. Yang, K. Zhang, and Z. Hu, “Simulation analysis of cross wedge rolling hollow parts with mandrel,” Adv. Mater. Res., 538–541, 542–547 (2012). C. Yang, K. Zhang, and Z. Hu, “Simulation analysis of cross wedge rolling hollow parts with mandrel,” Adv. Mater. Res., 538–541, 542–547 (2012).
36.
Zurück zum Zitat B. Hu, X. Shu, P. Yu, and W. Peng, “The strain analysis at the broadening stage of the hollow railway axle by multi-wedge cross wedge rolling,” Appl. Mech. Mater., 494–495, 457–460 (2014).CrossRef B. Hu, X. Shu, P. Yu, and W. Peng, “The strain analysis at the broadening stage of the hollow railway axle by multi-wedge cross wedge rolling,” Appl. Mech. Mater., 494–495, 457–460 (2014).CrossRef
37.
Zurück zum Zitat J. Zhou, Z. Yu, and Q. Zeng, “Analysis and experimental studies of internal voids in multi-wedge cross wedge rolling stepped shaft,” Int. J. Adv. Manuf. Tech., 72, 1559–1566 (2014).CrossRef J. Zhou, Z. Yu, and Q. Zeng, “Analysis and experimental studies of internal voids in multi-wedge cross wedge rolling stepped shaft,” Int. J. Adv. Manuf. Tech., 72, 1559–1566 (2014).CrossRef
38.
Zurück zum Zitat H. Yan, L. Wang, Y. Liu, et al., “Effect of thread helix angle on the axial metal flow of cross wedge rolling thread shaft,” Appl. Mech. Mater., 440, 177–181 (2014).CrossRef H. Yan, L. Wang, Y. Liu, et al., “Effect of thread helix angle on the axial metal flow of cross wedge rolling thread shaft,” Appl. Mech. Mater., 440, 177–181 (2014).CrossRef
39.
Zurück zum Zitat Z. Zheng, B. Wang, and Z. Hu, “Study on roller profile for cam forming by cross wedge rolling,” Appl. Mech. Mater., 217–219, 1713–1718 (2012).CrossRef Z. Zheng, B. Wang, and Z. Hu, “Study on roller profile for cam forming by cross wedge rolling,” Appl. Mech. Mater., 217–219, 1713–1718 (2012).CrossRef
40.
Zurück zum Zitat F. Ying, J., Shen, and L. Wu, “Study on the process of gear shaft formed by cross wedge rolling based on deform,” Adv. Mater. Res., 497, 55–60 (2012). F. Ying, J., Shen, and L. Wu, “Study on the process of gear shaft formed by cross wedge rolling based on deform,” Adv. Mater. Res., 497, 55–60 (2012).
41.
Zurück zum Zitat X. Shu, X. Wei, and L. Chen, “Influence analysis of block wedge on rolled-piece end quality in cross wedge rolling,” Appl. Mech. Mater., 101–102, 1055-1058 (2012). X. Shu, X. Wei, and L. Chen, “Influence analysis of block wedge on rolled-piece end quality in cross wedge rolling,” Appl. Mech. Mater., 101–102, 1055-1058 (2012).
42.
Zurück zum Zitat X. Wei and X. Shu, “Study on production mechanism of end concavity in cross wedge rolling,” Adv. Mater. Res., 314–316, 468–472 (2011).CrossRef X. Wei and X. Shu, “Study on production mechanism of end concavity in cross wedge rolling,” Adv. Mater. Res., 314–316, 468–472 (2011).CrossRef
43.
Zurück zum Zitat P. Qui, H. Xiao, and M. Li, “Effect of non-uniform temperature field on piece rolled by three-roll cross wedge rolling,” Appl. Mech. Mater., 16–19, 456–461 (2009). P. Qui, H. Xiao, and M. Li, “Effect of non-uniform temperature field on piece rolled by three-roll cross wedge rolling,” Appl. Mech. Mater., 16–19, 456–461 (2009).
44.
Zurück zum Zitat J. Zhou, C. Xiao, Y. Yu, and Z. Jia, “Influence of tool parameters on central deformation in two-wedge two-roll cross-wedge rolling,” Adv. Mater. Res., 486, 478–483 (2012).CrossRef J. Zhou, C. Xiao, Y. Yu, and Z. Jia, “Influence of tool parameters on central deformation in two-wedge two-roll cross-wedge rolling,” Adv. Mater. Res., 486, 478–483 (2012).CrossRef
45.
Zurück zum Zitat H. Yan, J. Liu, Z. Hu, et al., “Effects of die tooth profile on forming helical tooth shaft in cross wedge rolling,” Appl. Mech. Mater., 274, 165–169 (2013).CrossRef H. Yan, J. Liu, Z. Hu, et al., “Effects of die tooth profile on forming helical tooth shaft in cross wedge rolling,” Appl. Mech. Mater., 274, 165–169 (2013).CrossRef
46.
Zurück zum Zitat W. Ma, B. Wang, J. Zhou, and Q. Li, “Analysis of square billet cross wedge rolling process using finite element method,” Appl. Mech. Mater., 271–272, 406–411 (2013). W. Ma, B. Wang, J. Zhou, and Q. Li, “Analysis of square billet cross wedge rolling process using finite element method,” Appl. Mech. Mater., 271–272, 406–411 (2013).
47.
Zurück zum Zitat M. Jin, J. Li, and F. Ying, “Study on influencing factors of tooth forming quality for gear shaft with cross wedge rolling,” Appl. Mech. Mater., 201–202, 1164–1169 (2012).CrossRef M. Jin, J. Li, and F. Ying, “Study on influencing factors of tooth forming quality for gear shaft with cross wedge rolling,” Appl. Mech. Mater., 201–202, 1164–1169 (2012).CrossRef
48.
Zurück zum Zitat F. Zhao, J. Liu, J. Huang, and Z. Hu, “Analysis of the wedge tip fillet for central defects in the process of cross wedge rolling 4Cr9Si2 valve,” Adv. Mater. Res., 706–708, 3–6 (2013). F. Zhao, J. Liu, J. Huang, and Z. Hu, “Analysis of the wedge tip fillet for central defects in the process of cross wedge rolling 4Cr9Si2 valve,” Adv. Mater. Res., 706–708, 3–6 (2013).
49.
Zurück zum Zitat B. Sun, X. Zeng, X. Shu, et al., “Feasibility Study on forming hollow axle with multi-wedge synchrostep by cross wedge rolling,” Appl. Mech. Mater., 201–202, 673–677 (2012).CrossRef B. Sun, X. Zeng, X. Shu, et al., “Feasibility Study on forming hollow axle with multi-wedge synchrostep by cross wedge rolling,” Appl. Mech. Mater., 201–202, 673–677 (2012).CrossRef
50.
Zurück zum Zitat X. Shu, Z. Li, and W. Zu, “Bending analysis and measures of the forming of automobile semi-axle on cross-wedge rolling with multi-wedge,” Appl. Mech. Mater., 184–185, 75–79 (2012).CrossRef X. Shu, Z. Li, and W. Zu, “Bending analysis and measures of the forming of automobile semi-axle on cross-wedge rolling with multi-wedge,” Appl. Mech. Mater., 184–185, 75–79 (2012).CrossRef
51.
Zurück zum Zitat X. Wang, K. Zhang, J. Liu, and Z. Hu, “The effect and experimental research of forming angle on internal defect of valve roughcast formed by single cross wedge rolling,” Adv. Mater. Res., 230–232, 389–394 (2011). X. Wang, K. Zhang, J. Liu, and Z. Hu, “The effect and experimental research of forming angle on internal defect of valve roughcast formed by single cross wedge rolling,” Adv. Mater. Res., 230–232, 389–394 (2011).
52.
Zurück zum Zitat W. Gong, X. Shu, W. Peng, and B. Sun, “The research on the microstructure evolution law of cross wedge rolling asymmetric shaft-parts based on parity wedge,” Appl. Mech. Mater., 201–202, 1121–1125 (2012).CrossRef W. Gong, X. Shu, W. Peng, and B. Sun, “The research on the microstructure evolution law of cross wedge rolling asymmetric shaft-parts based on parity wedge,” Appl. Mech. Mater., 201–202, 1121–1125 (2012).CrossRef
53.
Zurück zum Zitat Z. Pater, “Numerical modelling of cross wedge rolling of rotary cutter body,” Acta Mechanica Slovaca, No. 3A, 361–366 (2008). Z. Pater, “Numerical modelling of cross wedge rolling of rotary cutter body,” Acta Mechanica Slovaca, No. 3A, 361–366 (2008).
54.
Zurück zum Zitat Z. Pater, A. Gontarz, G. Samoùyk, et al., “Analysis of cross rolling process of toothed titanium shafts,” Arch. Metall. Mater., 54, No. 3, 617–626 (2009). Z. Pater, A. Gontarz, G. Samoùyk, et al., “Analysis of cross rolling process of toothed titanium shafts,” Arch. Metall. Mater., 54, No. 3, 617–626 (2009).
55.
Zurück zum Zitat Z. Pater, A. Gontarz, and A, Tofil, “Analysis of the cross-wedge rolling process of toothed shafts made from 2618 aluminium alloy,” J. Shanghai Jiaotong Univ. (Science), 16, No. 2, 162–166 (2011). Z. Pater, A. Gontarz, and A, Tofil, “Analysis of the cross-wedge rolling process of toothed shafts made from 2618 aluminium alloy,” J. Shanghai Jiaotong Univ. (Science), 16, No. 2, 162–166 (2011).
56.
Zurück zum Zitat Y. Huo, Q. Bai, B. Wang, et al., “A new application of unified constitutive equations for cross wedge rolling of high-speed railway axle steel,” J. Mater. Process. Tech., 223, 274–283 (2015).CrossRef Y. Huo, Q. Bai, B. Wang, et al., “A new application of unified constitutive equations for cross wedge rolling of high-speed railway axle steel,” J. Mater. Process. Tech., 223, 274–283 (2015).CrossRef
57.
Zurück zum Zitat H. Ji, J. Liu, B. Wang, et al., “Cross-wedge rolling of a 4Cr9Si2 hollow valve: explorative experiment and finite element simulation,” Int. J. Adv. Manuf. Tech., 77, 15–26 (2015).CrossRef H. Ji, J. Liu, B. Wang, et al., “Cross-wedge rolling of a 4Cr9Si2 hollow valve: explorative experiment and finite element simulation,” Int. J. Adv. Manuf. Tech., 77, 15–26 (2015).CrossRef
58.
Zurück zum Zitat H. Ji, J. Liu, B. Wang, et al., “Numerical analysis and experiment on cross wedge rolling and forging for engine valves,” J. Mater. Process. Tech., 221, 233–242 (2015).CrossRef H. Ji, J. Liu, B. Wang, et al., “Numerical analysis and experiment on cross wedge rolling and forging for engine valves,” J. Mater. Process. Tech., 221, 233–242 (2015).CrossRef
59.
Zurück zum Zitat C. Yang and Z. Ku, “Research on the ovality of hollow shafts in cross wedge rolling with mandrel,” Int. J. Adv. Manuf. Tech., 83, 67–76 (2016).CrossRef C. Yang and Z. Ku, “Research on the ovality of hollow shafts in cross wedge rolling with mandrel,” Int. J. Adv. Manuf. Tech., 83, 67–76 (2016).CrossRef
60.
Zurück zum Zitat J. Ma, C. Yang, Z. Zheng, et al., “Influence of process parameters on the microstructural evolution of a rear axle tube during cross wedge rolling,” Int. J. Miner. Met. Mater., 23, No. 11, 1302–1314 (2016).CrossRef J. Ma, C. Yang, Z. Zheng, et al., “Influence of process parameters on the microstructural evolution of a rear axle tube during cross wedge rolling,” Int. J. Miner. Met. Mater., 23, No. 11, 1302–1314 (2016).CrossRef
61.
Zurück zum Zitat W. Peng, S. Zheng, Y. Chiu, et al., “Multi-wedge cross wedge rolling process of 42CrMo4 large and long hollow shaft,” Rare Metal Mat. Eng., 45, No. 4, 836–842 (2016).CrossRef W. Peng, S. Zheng, Y. Chiu, et al., “Multi-wedge cross wedge rolling process of 42CrMo4 large and long hollow shaft,” Rare Metal Mat. Eng., 45, No. 4, 836–842 (2016).CrossRef
62.
Zurück zum Zitat X. D. Shu, J. Wei, and C. Liu, “Study on the control of end quality by one closed cross wedge rolling based wedge block,” Metalurgija, 56, Nos. 1–2, 123–126 (2017). X. D. Shu, J. Wei, and C. Liu, “Study on the control of end quality by one closed cross wedge rolling based wedge block,” Metalurgija, 56, Nos. 1–2, 123–126 (2017).
63.
Zurück zum Zitat J. Huo, J. Lin, Q. Bai, et al., “Prediction of microstructure and ductile damage of a high-speed railway axle steel during cross wedge rolling,” J. Mater. Process. Tech., 239, 359–369 (2017).CrossRef J. Huo, J. Lin, Q. Bai, et al., “Prediction of microstructure and ductile damage of a high-speed railway axle steel during cross wedge rolling,” J. Mater. Process. Tech., 239, 359–369 (2017).CrossRef
64.
Zurück zum Zitat C. Yang, J. Ma, and Z. Hu, “Analysis and design of cross wedge rolling hollow axle sleeve with mandrel,” J. Mater. Process. Tech., 239, 346–358 (2017).CrossRef C. Yang, J. Ma, and Z. Hu, “Analysis and design of cross wedge rolling hollow axle sleeve with mandrel,” J. Mater. Process. Tech., 239, 346–358 (2017).CrossRef
65.
Zurück zum Zitat H. Ji, J. Liu, B. Wang, et al., “A new method for manufacturing hollow valves via cross wedge rolling and forging: Numerical analysis and experiment validation,” J. Mater. Process. Tech., 240, 1–11 (2017).CrossRef H. Ji, J. Liu, B. Wang, et al., “A new method for manufacturing hollow valves via cross wedge rolling and forging: Numerical analysis and experiment validation,” J. Mater. Process. Tech., 240, 1–11 (2017).CrossRef
66.
Zurück zum Zitat M. Meyer, M. Stonis, and B. A. Behrnes, “Cross wedge rolling preforms for crankshafts,” Key Eng. Mater., 504–506, 205–210 (2012).CrossRef M. Meyer, M. Stonis, and B. A. Behrnes, “Cross wedge rolling preforms for crankshafts,” Key Eng. Mater., 504–506, 205–210 (2012).CrossRef
67.
Zurück zum Zitat M. Meyer, M. Stonis, and B. A. Behrens, “Cross wedge rolling and bi-directional forging of preforms for crankshafts,” Prod. Eng., 9, 61–71 (2015).CrossRef M. Meyer, M. Stonis, and B. A. Behrens, “Cross wedge rolling and bi-directional forging of preforms for crankshafts,” Prod. Eng., 9, 61–71 (2015).CrossRef
68.
Zurück zum Zitat M. F. Novella, A. Ghiotti, S. Bruschi, and P. F. Bariani, “Ductile damage modeling at elevated temperature applied to the cross wedge rolling of AA6082-T6 bars,” J. Mater. Process. Tech., 222, 259–267 (2015).CrossRef M. F. Novella, A. Ghiotti, S. Bruschi, and P. F. Bariani, “Ductile damage modeling at elevated temperature applied to the cross wedge rolling of AA6082-T6 bars,” J. Mater. Process. Tech., 222, 259–267 (2015).CrossRef
69.
Zurück zum Zitat K. Kpodzo, L. Fourment, P. Lanse, and P. Montmitonnet, “An accurate time integration scheme for arbitrary rotation motion: application to metal forming simulation,” Int. J. Mater. Form., 9, 71–84 (2016).CrossRef K. Kpodzo, L. Fourment, P. Lanse, and P. Montmitonnet, “An accurate time integration scheme for arbitrary rotation motion: application to metal forming simulation,” Int. J. Mater. Form., 9, 71–84 (2016).CrossRef
70.
Zurück zum Zitat Z. Pater and A. Tofil, “Experimental and theoretical analysis of the cross-wedge rolling process in cold forming conditions,” Arch. Metall. Mater., 52, No. 2, 289–297 (2007). Z. Pater and A. Tofil, “Experimental and theoretical analysis of the cross-wedge rolling process in cold forming conditions,” Arch. Metall. Mater., 52, No. 2, 289–297 (2007).
71.
Zurück zum Zitat F. Q. Ying and B. S. Pan, “Analysis on temperature distribution in cross wedge rolling process with finite element method,” J. Mater. Process. Tech., 187–188, 392–396 (2007).CrossRef F. Q. Ying and B. S. Pan, “Analysis on temperature distribution in cross wedge rolling process with finite element method,” J. Mater. Process. Tech., 187–188, 392–396 (2007).CrossRef
72.
Zurück zum Zitat Z. Pater and J. Bartnicki, “Finished cross-wedge rolling of hollowed cutters,” Arch. Metall. Mater., 51, No. 2, 205–211 (2006). Z. Pater and J. Bartnicki, “Finished cross-wedge rolling of hollowed cutters,” Arch. Metall. Mater., 51, No. 2, 205–211 (2006).
73.
Zurück zum Zitat Z. Pater, “Finite element analysis of cross wedge rolling,” J. Mater. Process. Tech., 173, 201–208 (2006).CrossRef Z. Pater, “Finite element analysis of cross wedge rolling,” J. Mater. Process. Tech., 173, 201–208 (2006).CrossRef
74.
Zurück zum Zitat Z. Pater, A. Gontarz, and W. Weronski, “Cross-wedge rolling by means of one flat wedge and two shaped rolls,” J. Mater. Process. Tech., 177, 550–554 (2006).CrossRef Z. Pater, A. Gontarz, and W. Weronski, “Cross-wedge rolling by means of one flat wedge and two shaped rolls,” J. Mater. Process. Tech., 177, 550–554 (2006).CrossRef
75.
Zurück zum Zitat Z. Pater, J. Bartnicki, and G. Samoùyk, “Numerical modelling of cross-wedge rolling process of ball pin,” J. Mater. Process. Tech., 164–165, 1235–1240 (2005).CrossRef Z. Pater, J. Bartnicki, and G. Samoùyk, “Numerical modelling of cross-wedge rolling process of ball pin,” J. Mater. Process. Tech., 164–165, 1235–1240 (2005).CrossRef
76.
Zurück zum Zitat J. Bartnicki and Z. Pater, “Numerical simulation of three-rolls cross-wedge rolling of hollowed shaft,” J. Mater. Process. Tech., 164–165, 1154–1159 (2005).CrossRef J. Bartnicki and Z. Pater, “Numerical simulation of three-rolls cross-wedge rolling of hollowed shaft,” J. Mater. Process. Tech., 164–165, 1154–1159 (2005).CrossRef
77.
Zurück zum Zitat Z. Pater, “The analysis of the strain in parts formed by means of the wedge-rolls rolling (WRR),” Arch. Metall. Mater., 50, No. 3, 675–690 (2005). Z. Pater, “The analysis of the strain in parts formed by means of the wedge-rolls rolling (WRR),” Arch. Metall. Mater., 50, No. 3, 675–690 (2005).
78.
Zurück zum Zitat J. Bartnicki and Z. Pater, “The aspects of stability in cross-wedge rolling processes of hollowed shafts,” J. Mater. Process. Tech., 155–156, 1867–1873 (2004).CrossRef J. Bartnicki and Z. Pater, “The aspects of stability in cross-wedge rolling processes of hollowed shafts,” J. Mater. Process. Tech., 155–156, 1867–1873 (2004).CrossRef
79.
Zurück zum Zitat Z. Pater, “Stress state in cross wedge rolling process,” Arch. Metall., 48, No. 1, 21–35 (2003). Z. Pater, “Stress state in cross wedge rolling process,” Arch. Metall., 48, No. 1, 21–35 (2003).
80.
Zurück zum Zitat Z. Pater, T. Bulzak, and J. Tomczak, “Cross-wedge rolling of driving shaft from titanium alloy Ti6Al4V,” Key Eng. Mater., 687, 125–132 (2016).CrossRef Z. Pater, T. Bulzak, and J. Tomczak, “Cross-wedge rolling of driving shaft from titanium alloy Ti6Al4V,” Key Eng. Mater., 687, 125–132 (2016).CrossRef
81.
Zurück zum Zitat H. Huang, X. Chen, B. Fan, et al., “Initial billet temperature influence and location investigation on tool wear in cross wedge rolling,” Int. J. Adv. Manuf. Tech., 79, 1545–1556 (2015).CrossRef H. Huang, X. Chen, B. Fan, et al., “Initial billet temperature influence and location investigation on tool wear in cross wedge rolling,” Int. J. Adv. Manuf. Tech., 79, 1545–1556 (2015).CrossRef
Metadaten
Titel
Fem Simulation of the Cross-Wedge Rolling Process for a Stepped Shaft
verfasst von
Z. Pater
J. Tomczak
T. Bulzak
Publikationsdatum
13.11.2017
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 4/2017
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-017-9895-z

Weitere Artikel der Ausgabe 4/2017

Strength of Materials 4/2017 Zur Ausgabe

Acknowledgments

Preface

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.