Skip to main content
Erschienen in: The Journal of Supercomputing 4/2021

31.08.2020

Improving the learning of self-driving vehicles based on real driving behavior using deep neural network techniques

verfasst von: Nayereh Zaghari, Mahmood Fathy, Seyed Mahdi Jameii, Mohammad Sabokrou, Mohammad Shahverdy

Erschienen in: The Journal of Supercomputing | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Considering the significant advancements in autonomous vehicle technology, research in this field is of interest to researchers. To drive vehicles autonomously, controlling steer angle, gas hatch, and brakes needs to be learned. The behavioral cloning method is used to imitate humans’ driving behavior. We created a dataset of driving in different routes and conditions, and using the designed model, the output used for controlling the vehicle is obtained. In this paper, the learning of self-driving vehicles based on real driving behavior using deep neural network techniques (LSV-DNN) is proposed. We designed a convolutional network which uses the real driving data obtained through the vehicle’s camera and computer. The response of the driver during driving is recorded in different situations, and by converting the real driver’s driving video to images and transferring the data to an Excel file, obstacle detection is carried out with the best accuracy and speed using the Yolo algorithm version 3. This way, the network learns the response of the driver to obstacles in different locations and the network is trained with the Yolo algorithm version 3 and the output of obstacle detection. Then, it outputs the steer angle and amount of brake, gas, and vehicle acceleration. This study focuses on designing a convolutional network using behavioral cloning and motion planning of autonomous vehicle using a deep learning framework. Neural networks are effective systems for finding relationships between data, modeling, and predict new data or classify data. As a result Neural networks with input real data predict steer angle and speed for autonomous driving. The LSV-DNN is evaluated here via extensive simulations carried out in Python and TensorFlow environment. We evaluated the network error using the loss function. The results confirmed that our scheme is capable of exhibiting high prediction accuracy (exceeding 92.93%). In addition, our proposed scheme has high speed (more than 64.41%), low FPR (less than 6.89%), and low FNR (less than 3.95%), in comparison with the other approaches currently being employed. By comparing other methods which were conducted on the simulator’s data, we obtained good performance results for the designed network on the data from KITTI benchmark, the data collected using a private vehicle, and the data we collected.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kocić J, Jovičić N, Drndarević V (2019) An End-to-End deep neural network for autonomous driving designed for embedded automotive platforms. Sensor 19(9):2064CrossRef Kocić J, Jovičić N, Drndarević V (2019) An End-to-End deep neural network for autonomous driving designed for embedded automotive platforms. Sensor 19(9):2064CrossRef
2.
Zurück zum Zitat Azam S, Munir F, Rafique MA, Sheri AM, Hussain MI, Jeon M (2020). N 2 C: neural network controller design using behavioral cloning. arXiv preprint arXiv:2006.00820 Azam S, Munir F, Rafique MA, Sheri AM, Hussain MI, Jeon M (2020). N 2 C: neural network controller design using behavioral cloning. arXiv preprint arXiv:​2006.​00820
3.
Zurück zum Zitat Shahverdy M, Fathy M, Berangi R, Sabokrou M (2020) Driver behavior detection and classification using deep convolutional neural networks. Expert Syst Appl 149:113240CrossRef Shahverdy M, Fathy M, Berangi R, Sabokrou M (2020) Driver behavior detection and classification using deep convolutional neural networks. Expert Syst Appl 149:113240CrossRef
4.
Zurück zum Zitat Benjdira B, Khursheed T, Koubaa A, Ammar A, Ouni K (2019) Car detection using unmanned aerial vehicles: comparison between faster r-cnn and yolov3. In: 2019 1st International Conference on Unmanned Vehicle Systems-Oman (UVS). IEEE, pp 1–6 Benjdira B, Khursheed T, Koubaa A, Ammar A, Ouni K (2019) Car detection using unmanned aerial vehicles: comparison between faster r-cnn and yolov3. In: 2019 1st International Conference on Unmanned Vehicle Systems-Oman (UVS). IEEE, pp 1–6
5.
Zurück zum Zitat Hatt M, Parmar C, Qi J, El Naqa I (2019) Machine (deep) learning methods for image processing and radiomics. IEEE Trans Radiat Plasma Med Sci 3(2):104–108CrossRef Hatt M, Parmar C, Qi J, El Naqa I (2019) Machine (deep) learning methods for image processing and radiomics. IEEE Trans Radiat Plasma Med Sci 3(2):104–108CrossRef
6.
Zurück zum Zitat Nawrocka D (2018). Machine learning for trading and portfolio management using Python. In: Henderson P, Islam R, Bachman P, Pineau J, Precup D, Meger D (eds) Deep reinforcement learning that matters. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018 Nawrocka D (2018). Machine learning for trading and portfolio management using Python. In: Henderson P, Islam R, Bachman P, Pineau J, Precup D, Meger D (eds) Deep reinforcement learning that matters. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018
7.
Zurück zum Zitat Patel KK (2020) A simulation environment with reduced reality gap for testing autonomous vehicles (Doctoral dissertation, University of Windsor, Canada) Patel KK (2020) A simulation environment with reduced reality gap for testing autonomous vehicles (Doctoral dissertation, University of Windsor, Canada)
8.
Zurück zum Zitat Xie Y, Le L (2019) Inventors; Equifax Inc, assignee. Dual deep learning architecture for machine-learning systems. United States patent application US 16/141,152 Xie Y, Le L (2019) Inventors; Equifax Inc, assignee. Dual deep learning architecture for machine-learning systems. United States patent application US 16/141,152
9.
Zurück zum Zitat Kanade T, Thorpe C, Whittaker W (1986) Autonomous land vehicle project at CMU. In: Proceedings of the 1986 ACM Fourteenth Annual Conference on Computer Science. ACM, pp 71–80 Kanade T, Thorpe C, Whittaker W (1986) Autonomous land vehicle project at CMU. In: Proceedings of the 1986 ACM Fourteenth Annual Conference on Computer Science. ACM, pp 71–80
10.
Zurück zum Zitat Wallace RS, Stentz A, Thorpe CE, Moravec HP, Whittaker W, Kanade T (1985) First results in robot road-following. In: IJCAI, pp 1089–1095 Wallace RS, Stentz A, Thorpe CE, Moravec HP, Whittaker W, Kanade T (1985) First results in robot road-following. In: IJCAI, pp 1089–1095
11.
Zurück zum Zitat Dickmanns ED, Zapp A (1987) Autonomous high speed road vehicle guidance by computer vision. IFAC Proc Vol 20(5):221–226CrossRef Dickmanns ED, Zapp A (1987) Autonomous high speed road vehicle guidance by computer vision. IFAC Proc Vol 20(5):221–226CrossRef
12.
Zurück zum Zitat Thrun S, Montemerlo M, Dahlkamp H, Stavens D, Aron A, Diebel J, Fong P, Gale J, Halpenny M, Hoffmann G, Stanley KL (2006) The robot that won the DARPA Grand Challenge. J Field Robot. 23(9):661–692CrossRef Thrun S, Montemerlo M, Dahlkamp H, Stavens D, Aron A, Diebel J, Fong P, Gale J, Halpenny M, Hoffmann G, Stanley KL (2006) The robot that won the DARPA Grand Challenge. J Field Robot. 23(9):661–692CrossRef
13.
Zurück zum Zitat Montemerlo M, Thrun S, Dahlkamp H, Stavens D, Strohband S (2006) Winning the DARPA Grand Challenge with an AI robot. In: AAAI 2006, pp 982–987 Montemerlo M, Thrun S, Dahlkamp H, Stavens D, Strohband S (2006) Winning the DARPA Grand Challenge with an AI robot. In: AAAI 2006, pp 982–987
14.
Zurück zum Zitat Buehler M, Iagnemma K, Singh S (eds) (2009) The DARPA urban challenge: autonomous vehicles in city traffic. Springer, New York Buehler M, Iagnemma K, Singh S (eds) (2009) The DARPA urban challenge: autonomous vehicles in city traffic. Springer, New York
15.
Zurück zum Zitat Sze V, Chen YH, Yang TJ, Emer JS (2017) Efficient processing of deep neural networks: a tutorial and survey. Proc IEEE 105(12):2295–2329CrossRef Sze V, Chen YH, Yang TJ, Emer JS (2017) Efficient processing of deep neural networks: a tutorial and survey. Proc IEEE 105(12):2295–2329CrossRef
16.
Zurück zum Zitat Cunneen M, Mullins M, Murphy F (2019) Autonomous vehicles and embedded artificial intelligence: the challenges of framing machine driving decisions. Appl Artif Intell 33(8):706–731CrossRef Cunneen M, Mullins M, Murphy F (2019) Autonomous vehicles and embedded artificial intelligence: the challenges of framing machine driving decisions. Appl Artif Intell 33(8):706–731CrossRef
17.
Zurück zum Zitat Codevilla F, Miiller M, Lo´pez A, Koltun V, Dosovitskiy A (2018) End-to-End driving via conditional imitation learning. In: IEEE International Conference on Robotics and Automation, 2018 Codevilla F, Miiller M, Lo´pez A, Koltun V, Dosovitskiy A (2018) End-to-End driving via conditional imitation learning. In: IEEE International Conference on Robotics and Automation, 2018
18.
Zurück zum Zitat Ly AO, Akhloufi MA (2020) Learning to drive by imitation: an overview of deep behavior cloning methods. IEEE Trans Intell Veh Ly AO, Akhloufi MA (2020) Learning to drive by imitation: an overview of deep behavior cloning methods. IEEE Trans Intell Veh
19.
Zurück zum Zitat Kelchtermans K, Tuytelaars T (2017) How hard is it to cross the room? Training (recurrent) neural networks to steer a UAV. arXiv preprint arXiv:1702.07600 Kelchtermans K, Tuytelaars T (2017) How hard is it to cross the room? Training (recurrent) neural networks to steer a UAV. arXiv preprint arXiv:​1702.​07600
20.
Zurück zum Zitat Hancock PA, Nourbakhsh I, Stewart J (2019) On the future of transportation in an era of automated and autonomous vehicles. Proc Natl Acad Sci 116(16):7684–7691CrossRef Hancock PA, Nourbakhsh I, Stewart J (2019) On the future of transportation in an era of automated and autonomous vehicles. Proc Natl Acad Sci 116(16):7684–7691CrossRef
21.
Zurück zum Zitat Xu H, Gao Y, Yu F, Darrell T (2017) End-to-end learning of driving models from large-scale video datasets. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 2174–2182 Xu H, Gao Y, Yu F, Darrell T (2017) End-to-end learning of driving models from large-scale video datasets. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 2174–2182
22.
23.
Zurück zum Zitat Sundermeyer M, Oparin I, Gauvain JL, Freiberg B, Schlüter R, Ney H (2013) Comparison of feedforward and recurrent neural network language models. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, pp 8430–8434 Sundermeyer M, Oparin I, Gauvain JL, Freiberg B, Schlüter R, Ney H (2013) Comparison of feedforward and recurrent neural network language models. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, pp 8430–8434
24.
Zurück zum Zitat Sundermeyer M, Schlüter R, Ney H (2012) LSTM neural networks for language modeling. In: Thirteenth Annual Conference of the International Speech Communication Association 2012 Sundermeyer M, Schlüter R, Ney H (2012) LSTM neural networks for language modeling. In: Thirteenth Annual Conference of the International Speech Communication Association 2012
25.
Zurück zum Zitat Pomerleau DA (1989) Alvinn: An autonomous land vehicle in a neural network. In: Advances in neural information processing systems, pp 305–313 Pomerleau DA (1989) Alvinn: An autonomous land vehicle in a neural network. In: Advances in neural information processing systems, pp 305–313
26.
Zurück zum Zitat Muller U, Ben J, Cosatto E, Flepp B, Cun YL (2006) Off-road obstacle avoidance through end-to-end learning. In: Advances in neural information processing systems, pp 739–746 Muller U, Ben J, Cosatto E, Flepp B, Cun YL (2006) Off-road obstacle avoidance through end-to-end learning. In: Advances in neural information processing systems, pp 739–746
27.
Zurück zum Zitat Bojarski M, Del Testa D, Dworakowski D, Firner B, Flepp B, Goyal P, Jackel LD, Monfort M, Muller U, Zhang J, Zhang X (2016) End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316 Bojarski M, Del Testa D, Dworakowski D, Firner B, Flepp B, Goyal P, Jackel LD, Monfort M, Muller U, Zhang J, Zhang X (2016) End to end learning for self-driving cars. arXiv preprint arXiv:​1604.​07316
28.
Zurück zum Zitat Babhulkar A. Self-driving car using udacity’s car simulator environment and trained by deep neural networks Babhulkar A. Self-driving car using udacity’s car simulator environment and trained by deep neural networks
29.
Zurück zum Zitat Bach S, Binder A, Montavon G, Klauschen F, Müller KR, Samek W (2015) On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7):e0130140CrossRef Bach S, Binder A, Montavon G, Klauschen F, Müller KR, Samek W (2015) On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7):e0130140CrossRef
30.
Zurück zum Zitat Binder A, Montavon G, Lapuschkin S, Müller KR, Samek W (2016) Layer-wise relevance propagation for neural networks with local renormalization layers. In: International Conference on Artificial Neural Networks. Springer, Cham, pp 63–71 Binder A, Montavon G, Lapuschkin S, Müller KR, Samek W (2016) Layer-wise relevance propagation for neural networks with local renormalization layers. In: International Conference on Artificial Neural Networks. Springer, Cham, pp 63–71
31.
Zurück zum Zitat Lapuschkin S, Binder A, Montavon G, Muller KR, Samek W (2016) Analyzing classifiers: Fisher vectors and deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 2912–2920 Lapuschkin S, Binder A, Montavon G, Muller KR, Samek W (2016) Analyzing classifiers: Fisher vectors and deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 2912–2920
32.
Zurück zum Zitat Codevilla F, Santana E, López AM, Gaidon A (2019) Exploring the limitations of behavior cloning for autonomous driving. In: Proceedings of the IEEE International Conference on Computer Vision, pp 9329–9338 Codevilla F, Santana E, López AM, Gaidon A (2019) Exploring the limitations of behavior cloning for autonomous driving. In: Proceedings of the IEEE International Conference on Computer Vision, pp 9329–9338
33.
Zurück zum Zitat Zhao L, Li S (2020) Object detection algorithm based on improved YOLOv3. Electronics 9(3):537CrossRef Zhao L, Li S (2020) Object detection algorithm based on improved YOLOv3. Electronics 9(3):537CrossRef
34.
Zurück zum Zitat Arras L, Horn F, Montavon G, Müller KR, Samek W (2016) Explaining predictions of non-linear classifiers in NLP. arXiv preprint arXiv:1606.07298 Arras L, Horn F, Montavon G, Müller KR, Samek W (2016) Explaining predictions of non-linear classifiers in NLP. arXiv preprint arXiv:​1606.​07298
35.
Zurück zum Zitat Huang Y, Chen Y (2020) Autonomous driving with deep learning: a survey of State-of-Art technologies. arXiv preprint arXiv:2006.06091 Huang Y, Chen Y (2020) Autonomous driving with deep learning: a survey of State-of-Art technologies. arXiv preprint arXiv:​2006.​06091
36.
Zurück zum Zitat Nawrocka, D. (2018). Machine learning for trading and portfolio management using Python Nawrocka, D. (2018). Machine learning for trading and portfolio management using Python
37.
Zurück zum Zitat Song S, Hu X, Yu J, Bai L, Chen L (2018) Learning a deep motion planning model for autonomous driving. In: IEEE intelligent vehicles symposium Song S, Hu X, Yu J, Bai L, Chen L (2018) Learning a deep motion planning model for autonomous driving. In: IEEE intelligent vehicles symposium
38.
Zurück zum Zitat Chowdhuri S, Pankaj T, Zipser K (2019) MultiNet: multi-modal multitask learning for autonomous driving. In: IEEE Winter Conference on Applications of Computer Vision, pp 1496–1504 Chowdhuri S, Pankaj T, Zipser K (2019) MultiNet: multi-modal multitask learning for autonomous driving. In: IEEE Winter Conference on Applications of Computer Vision, pp 1496–1504
Metadaten
Titel
Improving the learning of self-driving vehicles based on real driving behavior using deep neural network techniques
verfasst von
Nayereh Zaghari
Mahmood Fathy
Seyed Mahdi Jameii
Mohammad Sabokrou
Mohammad Shahverdy
Publikationsdatum
31.08.2020
Verlag
Springer US
Erschienen in
The Journal of Supercomputing / Ausgabe 4/2021
Print ISSN: 0920-8542
Elektronische ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-020-03399-4

Weitere Artikel der Ausgabe 4/2021

The Journal of Supercomputing 4/2021 Zur Ausgabe

Premium Partner