Skip to main content
Erschienen in: The Journal of Supercomputing 2/2022

15.06.2021

Efficient designs of quantum-dot cellular automata multiplexer and RAM with physical proof along with power analysis

verfasst von: Seyed-Sajad Ahmadpour, Mohammad Mosleh, Saeed Rasouli Heikalabad

Erschienen in: The Journal of Supercomputing | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this manuscript, we first suggest a single-layer 2:1 QCA MUX with an ultra-low number of cells and high speed. Unlike existing designs, the output of the proposed design does not comply with the Boolean regulation and is produced using the essential characteristics of quantum technology. Single-layer 4:1 and 8:1 QCA multiplexers have also been implemented. Moreover, using the proposed 2:1 QCA MUX, a novel and efficient QCA RAM memory cell with the set and reset abilities has been proposed. Forasmuch as the most significant challenge in quantum-dot cellular automata circuit design is the number of cell counts and occupied area. The proposed 2:1 QCA MUX includes 10 cells and an occupied area of 0.03. The unique advantage of the proposed design over all previous output generation tasks is based on cellular interactions. Our findings showed that the proposed 2:1 QCA MUX has a 16.66% and 60% improvement in terms of cell count and occupied area, respectively. In order to confirm the function of the proposed design, some physical proofs are presented. The software for implement of the circuits and their power analysis are QCADesigner 2.0.3 and QCAPro, respectively. The results of the comparisons indicate that the proposed structures are more efficient than the existing ones. The QCAPro power analysis tool has been used for analyzing the power consumption of the proposed designs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bahar AN, Wahid KA (2020) Design of an efficient N × N butterfly switching network in quantum-dot cellular automata (QCA). IEEE Trans Nanotechnol 19:147 Bahar AN, Wahid KA (2020) Design of an efficient N × N butterfly switching network in quantum-dot cellular automata (QCA). IEEE Trans Nanotechnol 19:147
2.
Zurück zum Zitat Roshany HR, Rezai A (2019) Novel efficient circuit design for multilayer QCA RCA. Int J Theor Phys 58(6):1745–1757MathSciNetMATH Roshany HR, Rezai A (2019) Novel efficient circuit design for multilayer QCA RCA. Int J Theor Phys 58(6):1745–1757MathSciNetMATH
3.
Zurück zum Zitat Divshali MN, Rezai A, Hamidpour SSF (2019) Design of novel coplanar counter circuit in quantum dot cellular automata technology. Int J Theor Phys 58(8):2677–2691MathSciNetMATH Divshali MN, Rezai A, Hamidpour SSF (2019) Design of novel coplanar counter circuit in quantum dot cellular automata technology. Int J Theor Phys 58(8):2677–2691MathSciNetMATH
4.
Zurück zum Zitat Sen B et al (2014) Realizing reversible computing in QCA framework resulting in efficient design of testable ALU. ACM J Emerg Technol Comput Syst 11(3):30 Sen B et al (2014) Realizing reversible computing in QCA framework resulting in efficient design of testable ALU. ACM J Emerg Technol Comput Syst 11(3):30
8.
Zurück zum Zitat Bahar AN, Wahid KA (2019) Design of QCA-serial parallel multiplier (QSPM) with energy dissipation analysis. IEEE Trans Circuits Syst II Express Briefs 67:1939 Bahar AN, Wahid KA (2019) Design of QCA-serial parallel multiplier (QSPM) with energy dissipation analysis. IEEE Trans Circuits Syst II Express Briefs 67:1939
9.
Zurück zum Zitat De D, Purkayastha T, Chattopadhyay T (2016) Design of QCA based Programmable Logic Array using decoder. Microelectron J 55:92–107 De D, Purkayastha T, Chattopadhyay T (2016) Design of QCA based Programmable Logic Array using decoder. Microelectron J 55:92–107
10.
Zurück zum Zitat Cocorullo G et al (2016) Design of efficient QCA multiplexers. Int J Circuit Theory Appl 44(3):602–615 Cocorullo G et al (2016) Design of efficient QCA multiplexers. Int J Circuit Theory Appl 44(3):602–615
11.
Zurück zum Zitat Ahmadpour SS, Mosleh M, Rasouli Heikalabad S (2019) Robust QCA full-adders using an efficient fault-tolerant five-input majority gate. Int J Circuit Theory Appl 47:1037 Ahmadpour SS, Mosleh M, Rasouli Heikalabad S (2019) Robust QCA full-adders using an efficient fault-tolerant five-input majority gate. Int J Circuit Theory Appl 47:1037
13.
Zurück zum Zitat Kassa SR, Nagaria R, Karthik R (2018) Energy efficient neoteric design of a 3-input majority gate with its implementation and physical proof in quantum dot cellular automata. Nano Commun Netw 15:28–40 Kassa SR, Nagaria R, Karthik R (2018) Energy efficient neoteric design of a 3-input majority gate with its implementation and physical proof in quantum dot cellular automata. Nano Commun Netw 15:28–40
14.
Zurück zum Zitat Balali M, Rezai A (2018) Design of low-complexity and high-speed coplanar four-bit ripple carry adder in QCA technology. Int J Theor Phys 57(7):1948–1960MathSciNetMATH Balali M, Rezai A (2018) Design of low-complexity and high-speed coplanar four-bit ripple carry adder in QCA technology. Int J Theor Phys 57(7):1948–1960MathSciNetMATH
15.
Zurück zum Zitat Rashidi H, Rezai A (2017) High-performance full adder architecture in quantum-dot cellular automata. J Eng 1(1):394 Rashidi H, Rezai A (2017) High-performance full adder architecture in quantum-dot cellular automata. J Eng 1(1):394
16.
Zurück zum Zitat Wang L, Xie G (2018) Novel designs of full adder in quantum-dot cellular automata technology. J Supercomput 74(9):4798–4816 Wang L, Xie G (2018) Novel designs of full adder in quantum-dot cellular automata technology. J Supercomput 74(9):4798–4816
17.
Zurück zum Zitat Abutaleb M (2018) Robust and efficient QCA cell-based nanostructures of elementary reversible logic gates. J Supercomput 74(11):6258–6274 Abutaleb M (2018) Robust and efficient QCA cell-based nanostructures of elementary reversible logic gates. J Supercomput 74(11):6258–6274
18.
Zurück zum Zitat Valinataj M (2017) Novel parity-preserving reversible logic array multipliers. J Supercomput 73(11):4843–4867 Valinataj M (2017) Novel parity-preserving reversible logic array multipliers. J Supercomput 73(11):4843–4867
19.
Zurück zum Zitat Khan MH, Thapliyal H, Munoz-Coreas E (2017) Automatic synthesis of quaternary quantum circuits. J Supercomput 73(5):1733–1759 Khan MH, Thapliyal H, Munoz-Coreas E (2017) Automatic synthesis of quaternary quantum circuits. J Supercomput 73(5):1733–1759
20.
Zurück zum Zitat Jayashree H et al (2016) Ancilla-input and garbage-output optimized design of a reversible quantum integer multiplier. J Supercomput 72(4):1477–1493 Jayashree H et al (2016) Ancilla-input and garbage-output optimized design of a reversible quantum integer multiplier. J Supercomput 72(4):1477–1493
21.
Zurück zum Zitat Kotiyal S, Thapliyal H, Ranganathan N (2015) Reversible logic based multiplication computing unit using binary tree data structure. J Supercomput 71(7):2668–2693 Kotiyal S, Thapliyal H, Ranganathan N (2015) Reversible logic based multiplication computing unit using binary tree data structure. J Supercomput 71(7):2668–2693
22.
Zurück zum Zitat Fam SR, Navimipour NJ (2019) Design of a loop-based random access memory based on the nanoscale quantum dot cellular automata. Photon Netw Commun 37(1):120–130 Fam SR, Navimipour NJ (2019) Design of a loop-based random access memory based on the nanoscale quantum dot cellular automata. Photon Netw Commun 37(1):120–130
23.
Zurück zum Zitat Seyedi S, Navimipour NJ (2018) Design and evaluation of a new structure for fault-tolerance full-adder based on quantum-dot cellular automata. Nano Commun Netw 16:1 Seyedi S, Navimipour NJ (2018) Design and evaluation of a new structure for fault-tolerance full-adder based on quantum-dot cellular automata. Nano Commun Netw 16:1
24.
Zurück zum Zitat Jeon J-C (2020) Designing nanotechnology QCA–multiplexer using majority function-based NAND for quantum computing. J Supercomput 77:1–17 Jeon J-C (2020) Designing nanotechnology QCA–multiplexer using majority function-based NAND for quantum computing. J Supercomput 77:1–17
25.
Zurück zum Zitat Jeon J-C (2020) Low-complexity QCA universal shift register design using multiplexer and D flip-flop based on electronic correlations. J Supercomput 76(8):6438–6452 Jeon J-C (2020) Low-complexity QCA universal shift register design using multiplexer and D flip-flop based on electronic correlations. J Supercomput 76(8):6438–6452
26.
Zurück zum Zitat Sadeghi M, Navi K, Dolatshahi M (2019) Novel efficient full adder and full subtractor designs in quantum cellular automata. J Supercomput 15:1–15 Sadeghi M, Navi K, Dolatshahi M (2019) Novel efficient full adder and full subtractor designs in quantum cellular automata. J Supercomput 15:1–15
27.
Zurück zum Zitat Oskouei SM, Ghaffari A (2019) Designing a new reversible ALU by QCA for reducing occupation area. J Supercomput 75(8):5118–5144 Oskouei SM, Ghaffari A (2019) Designing a new reversible ALU by QCA for reducing occupation area. J Supercomput 75(8):5118–5144
28.
Zurück zum Zitat Hashemi S, Azghadi MR, Navi K (2019) Design and analysis of efficient QCA reversible adders. J Supercomput 75(4):2106–2125 Hashemi S, Azghadi MR, Navi K (2019) Design and analysis of efficient QCA reversible adders. J Supercomput 75(4):2106–2125
29.
Zurück zum Zitat Das JC, De D (2019) Novel design of reversible priority encoder in quantum dot cellular automata based on Toffoli gate and Feynman gate. J Supercomput 75(10):6882–6903 Das JC, De D (2019) Novel design of reversible priority encoder in quantum dot cellular automata based on Toffoli gate and Feynman gate. J Supercomput 75(10):6882–6903
30.
Zurück zum Zitat Banik S, Roy S, Sen B (2019) Application-dependent testing of FPGA interconnect network. IEEE Trans Very Large Scale Integr Syst 27(10):2296–2304 Banik S, Roy S, Sen B (2019) Application-dependent testing of FPGA interconnect network. IEEE Trans Very Large Scale Integr Syst 27(10):2296–2304
31.
Zurück zum Zitat Bahar AN et al (2017) A novel 3-input XOR function implementation in quantum dot-cellular automata with energy dissipation analysis. Alex Eng J 57:729 Bahar AN et al (2017) A novel 3-input XOR function implementation in quantum dot-cellular automata with energy dissipation analysis. Alex Eng J 57:729
32.
Zurück zum Zitat Bahar AN, Waheed S (2016) Design and implementation of an efficient single layer five input majority voter gate in quantum-dot cellular automata. SpringerPlus 5(1):1–10 Bahar AN, Waheed S (2016) Design and implementation of an efficient single layer five input majority voter gate in quantum-dot cellular automata. SpringerPlus 5(1):1–10
33.
Zurück zum Zitat Bahar AN et al (2018) Designing efficient QCA even parity generator circuits with power dissipation analysis. Alex Eng J 57(4):2475–2484 Bahar AN et al (2018) Designing efficient QCA even parity generator circuits with power dissipation analysis. Alex Eng J 57(4):2475–2484
34.
Zurück zum Zitat Babaie S, Sadoghifar A, Bahar AN (2018) Design of an efficient multilayer arithmetic logic unit in quantum-dot cellular Automata (QCA). IEEE Trans Circuits Syst II Express Briefs 66(6):963–967 Babaie S, Sadoghifar A, Bahar AN (2018) Design of an efficient multilayer arithmetic logic unit in quantum-dot cellular Automata (QCA). IEEE Trans Circuits Syst II Express Briefs 66(6):963–967
35.
Zurück zum Zitat Bahar AN et al (2020) Atomic Silicon Quantum Dot: a new designing paradigm of an atomic logic circuit. IEEE Trans Nanotechnol 19:807 Bahar AN et al (2020) Atomic Silicon Quantum Dot: a new designing paradigm of an atomic logic circuit. IEEE Trans Nanotechnol 19:807
36.
Zurück zum Zitat Bahar AN, Wahid KA (2020) Design and implementation of approximate DCT architecture in quantum-dot cellular automata. IEEE Trans Very Large Scale Integr Syst 28(12):2530–2539 Bahar AN, Wahid KA (2020) Design and implementation of approximate DCT architecture in quantum-dot cellular automata. IEEE Trans Very Large Scale Integr Syst 28(12):2530–2539
37.
Zurück zum Zitat Walus K et al (2004) QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1):26–31 Walus K et al (2004) QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1):26–31
38.
Zurück zum Zitat Gudivada AA, Sudha GF (2021) Novel optimized tree-based stack-type architecture for 2 n-bit comparator at nanoscale with energy dissipation analysis. J Supercomput 77(5):4659–4680 Gudivada AA, Sudha GF (2021) Novel optimized tree-based stack-type architecture for 2 n-bit comparator at nanoscale with energy dissipation analysis. J Supercomput 77(5):4659–4680
39.
Zurück zum Zitat Farazkish R, Khodaparast F (2015) Design and characterization of a new fault-tolerant full-adder for quantum-dot cellular automata. Microprocess Microsyst 39(6):426–433 Farazkish R, Khodaparast F (2015) Design and characterization of a new fault-tolerant full-adder for quantum-dot cellular automata. Microprocess Microsyst 39(6):426–433
40.
Zurück zum Zitat Gadim MR, Navimipour NJ (2018) A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst Technol 24:1–11 Gadim MR, Navimipour NJ (2018) A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst Technol 24:1–11
41.
Zurück zum Zitat Afrooz S, Navimipour NJ (2018) Fault-tolerant Design of a Shift Register at the nanoscale based on quantum-dot cellular automata. Int J Theor Phys 57(9):2598–2614MATH Afrooz S, Navimipour NJ (2018) Fault-tolerant Design of a Shift Register at the nanoscale based on quantum-dot cellular automata. Int J Theor Phys 57(9):2598–2614MATH
42.
Zurück zum Zitat Seyedi S, Navimipour NJ (2017) An optimized design of full adder based on Nanoscale quantum-dot cellular automata. Optik Int J Light Electron Opt 158:243 Seyedi S, Navimipour NJ (2017) An optimized design of full adder based on Nanoscale quantum-dot cellular automata. Optik Int J Light Electron Opt 158:243
43.
Zurück zum Zitat Sherizadeh R, Navimipour NJ (2018) Designing a 2-to-4 decoder on nanoscale based on quantum-dot cellular automata for energy dissipation improving. Optik Int J Light Electron Opt 158:477–489 Sherizadeh R, Navimipour NJ (2018) Designing a 2-to-4 decoder on nanoscale based on quantum-dot cellular automata for energy dissipation improving. Optik Int J Light Electron Opt 158:477–489
44.
Zurück zum Zitat Seyedi S, Navimipour NJ (2018) An optimized three-level Design of Decoder Based on nanoscale quantum-dot cellular automata. Int J Theor Phys 57(7):2022–2033MathSciNetMATH Seyedi S, Navimipour NJ (2018) An optimized three-level Design of Decoder Based on nanoscale quantum-dot cellular automata. Int J Theor Phys 57(7):2022–2033MathSciNetMATH
45.
Zurück zum Zitat Seyedi S, Ghanbari A, Navimipour NJ (2019) New Design of a 4-Bit Ripple Carry Adder on a Nano-Scale Quantum-Dot Cellular Automata. Mosc Univ Phys Bull 74(5):494–501 Seyedi S, Ghanbari A, Navimipour NJ (2019) New Design of a 4-Bit Ripple Carry Adder on a Nano-Scale Quantum-Dot Cellular Automata. Mosc Univ Phys Bull 74(5):494–501
46.
Zurück zum Zitat Seyedi S, Darbandi M, Navimipour NJ (2019) Designing an efficient fault tolerance D-latch based on quantum-dot cellular automata nanotechnology. Optik 185:827–837 Seyedi S, Darbandi M, Navimipour NJ (2019) Designing an efficient fault tolerance D-latch based on quantum-dot cellular automata nanotechnology. Optik 185:827–837
47.
Zurück zum Zitat Teodósio T, Sousa L (2007) QCA-LG: A tool for the automatic layout generation of QCA combinational circuits. In: Norchip, 2007, IEEE Teodósio T, Sousa L (2007) QCA-LG: A tool for the automatic layout generation of QCA combinational circuits. In: Norchip, 2007, IEEE
48.
Zurück zum Zitat Kim K, Wu K, Karri R (2007) The robust QCA adder designs using composable QCA building blocks. IEEE Trans Comput Aided Des Integr Circuits Syst 26(1):176–183 Kim K, Wu K, Karri R (2007) The robust QCA adder designs using composable QCA building blocks. IEEE Trans Comput Aided Des Integr Circuits Syst 26(1):176–183
49.
Zurück zum Zitat Mardiris V, et al (2008) Design and simulation of a QCA 2 to 1 multiplexer. In: 12th WSEAS International Conference on Computers, Heraklion, Greece Mardiris V, et al (2008) Design and simulation of a QCA 2 to 1 multiplexer. In: 12th WSEAS International Conference on Computers, Heraklion, Greece
50.
Zurück zum Zitat Asfestani MN, Heikalabad SR (2017) A unique structure for the multiplexer in quantum-dot cellular automata to create a revolution in design of nanostructures. Phys B 512:91–99 Asfestani MN, Heikalabad SR (2017) A unique structure for the multiplexer in quantum-dot cellular automata to create a revolution in design of nanostructures. Phys B 512:91–99
51.
Zurück zum Zitat Song Z et al (2020) An ultra-low cost multilayer RAM in quantum-dot cellular automata. IEEE Trans Circuits Syst II Express Briefs 67(12):3397–3401 Song Z et al (2020) An ultra-low cost multilayer RAM in quantum-dot cellular automata. IEEE Trans Circuits Syst II Express Briefs 67(12):3397–3401
52.
Zurück zum Zitat Dehkordi MA et al (2011) Novel RAM cell designs based on inherent capabilities of quantum-dot cellular automata. Microelectron J 42(5):701–708MathSciNet Dehkordi MA et al (2011) Novel RAM cell designs based on inherent capabilities of quantum-dot cellular automata. Microelectron J 42(5):701–708MathSciNet
53.
Zurück zum Zitat Hashemi S, Navi K (2012) New robust QCA D flip flop and memory structures. Microelectron J 43(12):929–940 Hashemi S, Navi K (2012) New robust QCA D flip flop and memory structures. Microelectron J 43(12):929–940
54.
Zurück zum Zitat Angizi S et al (2015) Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectron J 46(1):43–51 Angizi S et al (2015) Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectron J 46(1):43–51
55.
Zurück zum Zitat Asfestani MN, Heikalabad SR (2017) A novel multiplexer-based structure for random access memory cell in quantum-dot cellular automata. Phys B 521:162–167 Asfestani MN, Heikalabad SR (2017) A novel multiplexer-based structure for random access memory cell in quantum-dot cellular automata. Phys B 521:162–167
56.
Zurück zum Zitat Ahmadpour S-S, Mosleh M, Asadi M-A (2020) The development of an efficient 2-to-4 decoder in quantum-dot cellular automata. Iran J Sci Technol Trans Electr Eng 45:1–15 Ahmadpour S-S, Mosleh M, Asadi M-A (2020) The development of an efficient 2-to-4 decoder in quantum-dot cellular automata. Iran J Sci Technol Trans Electr Eng 45:1–15
57.
Zurück zum Zitat Ahmadpour SS, Mosleh M (2020) A novel ultra-dense and low-power structure for fault-tolerant three-input majority gate in QCA technology. Concurr Comput Practice Exp 32(5):e5548 Ahmadpour SS, Mosleh M (2020) A novel ultra-dense and low-power structure for fault-tolerant three-input majority gate in QCA technology. Concurr Comput Practice Exp 32(5):e5548
58.
Zurück zum Zitat Mardiris VA, Karafyllidis IG (2010) Design and simulation of modular 2n to 1 quantum-dot cellular automata (QCA) multiplexers. Int J Circuit Theory Appl 38(8):771–785MATH Mardiris VA, Karafyllidis IG (2010) Design and simulation of modular 2n to 1 quantum-dot cellular automata (QCA) multiplexers. Int J Circuit Theory Appl 38(8):771–785MATH
59.
Zurück zum Zitat Sen B et al (2012) An efficient multiplexer in quantum-dot cellular automata. Progress in VLSI Design and Test. Springer, pp 350–351 Sen B et al (2012) An efficient multiplexer in quantum-dot cellular automata. Progress in VLSI Design and Test. Springer, pp 350–351
60.
Zurück zum Zitat Sen B et al (2014) Modular design of testable reversible ALU by QCA multiplexer with increase in programmability. Microelectron J 45(11):1522–1532 Sen B et al (2014) Modular design of testable reversible ALU by QCA multiplexer with increase in programmability. Microelectron J 45(11):1522–1532
61.
Zurück zum Zitat Sen B et al (2015) Towards the hierarchical design of multilayer QCA logic circuit. J Comput Sci 11:233–244 Sen B et al (2015) Towards the hierarchical design of multilayer QCA logic circuit. J Comput Sci 11:233–244
62.
Zurück zum Zitat Sen B et al (2015) Towards modular design of reliable quantum-dot cellular automata logic circuit using multiplexers. Comput Electr Eng 45:42–54 Sen B et al (2015) Towards modular design of reliable quantum-dot cellular automata logic circuit using multiplexers. Comput Electr Eng 45:42–54
63.
Zurück zum Zitat Vankamamidi V, Ottavi M, Lombardi F (2008) Two-dimensional schemes for clocking/timing of QCA circuits. IEEE Trans Comput Aided Des Integr Circuits Syst 27(1):34–44MATH Vankamamidi V, Ottavi M, Lombardi F (2008) Two-dimensional schemes for clocking/timing of QCA circuits. IEEE Trans Comput Aided Des Integr Circuits Syst 27(1):34–44MATH
64.
Zurück zum Zitat Walus K, et al (2003) RAM design using quantum-dot cellular automata. In: NanoTechnology Conference Walus K, et al (2003) RAM design using quantum-dot cellular automata. In: NanoTechnology Conference
65.
Zurück zum Zitat Srivastava S, et al (2011) QCAPro-an error-power estimation tool for QCA circuit design. In: 2011 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE Srivastava S, et al (2011) QCAPro-an error-power estimation tool for QCA circuit design. In: 2011 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE
66.
Zurück zum Zitat Taskin B, Hong B (2008) Improving line-based QCA memory cell design through dual phase clocking. IEEE Trans Very Large Scale Integr Syst 16(12):1648–1656 Taskin B, Hong B (2008) Improving line-based QCA memory cell design through dual phase clocking. IEEE Trans Very Large Scale Integr Syst 16(12):1648–1656
Metadaten
Titel
Efficient designs of quantum-dot cellular automata multiplexer and RAM with physical proof along with power analysis
verfasst von
Seyed-Sajad Ahmadpour
Mohammad Mosleh
Saeed Rasouli Heikalabad
Publikationsdatum
15.06.2021
Verlag
Springer US
Erschienen in
The Journal of Supercomputing / Ausgabe 2/2022
Print ISSN: 0920-8542
Elektronische ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-021-03913-2

Weitere Artikel der Ausgabe 2/2022

The Journal of Supercomputing 2/2022 Zur Ausgabe

Premium Partner