Skip to main content
Erschienen in: Telecommunication Systems 3/2021

05.10.2020

Multiband frequency reconfigurable substrate integrated waveguide antenna using copper strip for cognitive radio applicable to internet of things application

verfasst von: Najib AL-Fadhali, Huda Majid, Rosli Omar

Erschienen in: Telecommunication Systems | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a Multiband Frequency Reconfigurable Substrate Integrated Waveguide (FR-SIW) cavity backed slot antenna for Cognitive Radio appropriate to Internet of Things (IoT) technology is presented. The proposed antenna is developed to address the specific design challenges posed by the IoT based Cognitive Radio (CR) networks. Reconfiguration of frequency bands is achieved using copper strips. The antenna resonates during the selected five switching states of the copper strips at 2.9 GHz, 2.6 GHz, 2.824 GHz, 2.792 GHz, 2.872 GHz, 4.488 GHz, 4.724 GHz, 4.712 GHz, 5.476 GHz, 5.336 GHz, 5.448 GHz, 5.392 GHz, and 5.42 GHz. The multiple frequency bands are controlled by altering the electrical length of designed slots. Overall, the simulated and measured results showed good agreement and the designed antenna is a potential candidate for cognitive radio applications, especially to IoT applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Afzal, H., et al. (2019). Performance analysis of radio spectrum for cognitive radio wireless networks using discrete time markov Chain. Journal of Systems and Software. Afzal, H., et al. (2019). Performance analysis of radio spectrum for cognitive radio wireless networks using discrete time markov Chain. Journal of Systems and Software.
2.
Zurück zum Zitat Tuberquia-David, L., & Cesar H. (2018). Multifractal modeling of the radio electric spectrum applied in cognitive radio networks. In ITU kaleidoscope: Machine learning for a 5G future (ITU K). IEEE. Tuberquia-David, L., & Cesar H. (2018). Multifractal modeling of the radio electric spectrum applied in cognitive radio networks. In ITU kaleidoscope: Machine learning for a 5G future (ITU K). IEEE.
3.
Zurück zum Zitat AL-Fadhali, N. M. A., et al. (2019). Frequency reconfigurable substrate integrated waveguide (SIW) cavity F-shaped slot antenna. Indonesian Journal of Electrical Engineering and Informatics (IJEEI), 7(1), 136–143.CrossRef AL-Fadhali, N. M. A., et al. (2019). Frequency reconfigurable substrate integrated waveguide (SIW) cavity F-shaped slot antenna. Indonesian Journal of Electrical Engineering and Informatics (IJEEI), 7(1), 136–143.CrossRef
4.
Zurück zum Zitat Rehmani, M. H., & Riadh, D. (2019). Cognitive radio, mobile communications and wireless networks. Berlin: Springer.CrossRef Rehmani, M. H., & Riadh, D. (2019). Cognitive radio, mobile communications and wireless networks. Berlin: Springer.CrossRef
5.
Zurück zum Zitat Poli, L., et al. (2018). Advanced pulse sequence design in time-modulated arrays for cognitive radio. IEEE Antennas and Wireless Propagation Letters, 17(5), 898–902.CrossRef Poli, L., et al. (2018). Advanced pulse sequence design in time-modulated arrays for cognitive radio. IEEE Antennas and Wireless Propagation Letters, 17(5), 898–902.CrossRef
6.
Zurück zum Zitat Peng, Limei, Dhaini, Ahmad R., & Ho, Pin-Han. (2018). Toward integrated Cloud-Fog networks for efficient IoT provisioning: Key challenges and solutions. Future Generation Computer Systems, 88, 606–613.CrossRef Peng, Limei, Dhaini, Ahmad R., & Ho, Pin-Han. (2018). Toward integrated Cloud-Fog networks for efficient IoT provisioning: Key challenges and solutions. Future Generation Computer Systems, 88, 606–613.CrossRef
7.
Zurück zum Zitat Munir, Arslan, Kansakar, Prasanna, & Khan, S. U. (2017). IFCIoT: Integrated Fog Cloud IoT: A novel architectural paradigm for the future Internet of Things. IEEE Consumer Electronics Magazine, 6(3), 74–82.CrossRef Munir, Arslan, Kansakar, Prasanna, & Khan, S. U. (2017). IFCIoT: Integrated Fog Cloud IoT: A novel architectural paradigm for the future Internet of Things. IEEE Consumer Electronics Magazine, 6(3), 74–82.CrossRef
8.
Zurück zum Zitat Shah, M. A., Sijing Z., & Carsten M. (2013). Cognitive radio networks for Internet of Things: Applications, challenges and future. In 19th International conference on automation and computing. IEEE. Shah, M. A., Sijing Z., & Carsten M. (2013). Cognitive radio networks for Internet of Things: Applications, challenges and future. In 19th International conference on automation and computing. IEEE.
9.
Zurück zum Zitat Song, L., et al. (2019). Wide-band frequency reconfigurable patch antenna with switchable slots (PASS) based on liquid metal and 3D printed microfluidics. IEEE Transactions on Antennas and Propagation. Song, L., et al. (2019). Wide-band frequency reconfigurable patch antenna with switchable slots (PASS) based on liquid metal and 3D printed microfluidics. IEEE Transactions on Antennas and Propagation.
10.
Zurück zum Zitat Prasad, B. S., Mallikarjuna, P. R., & Madhav, B. T. P. (2018). Trapezoidal notch band frequency and polarization reconfigurable antenna for medical and wireless communication applications. Indian Journal of Public Health Research & Development, 9, 6. Prasad, B. S., Mallikarjuna, P. R., & Madhav, B. T. P. (2018). Trapezoidal notch band frequency and polarization reconfigurable antenna for medical and wireless communication applications. Indian Journal of Public Health Research & Development, 9, 6.
11.
Zurück zum Zitat Lou, Q., et al. (2017). Realizing frequency reconfigurable antenna by ferrite loaded half mode SIW. Microwave and Optical Technology Letters, 59(6), 1365–1371.CrossRef Lou, Q., et al. (2017). Realizing frequency reconfigurable antenna by ferrite loaded half mode SIW. Microwave and Optical Technology Letters, 59(6), 1365–1371.CrossRef
12.
Zurück zum Zitat Karmokar, D. K., et al. (2018). Substrate integrated waveguide-based periodic backward-to-forward scanning leaky-wave antenna with low cross-polarization. IEEE Transactions on Antennas and Propagation, 66(8), 3846–3856.CrossRef Karmokar, D. K., et al. (2018). Substrate integrated waveguide-based periodic backward-to-forward scanning leaky-wave antenna with low cross-polarization. IEEE Transactions on Antennas and Propagation, 66(8), 3846–3856.CrossRef
13.
Zurück zum Zitat Agneessens, S., et al. (2015). Wearable, small, and robust: The circular quarter-mode textile antenna. IEEE Antennas and Wireless Propagation Letters, 14, 1482–1485.CrossRef Agneessens, S., et al. (2015). Wearable, small, and robust: The circular quarter-mode textile antenna. IEEE Antennas and Wireless Propagation Letters, 14, 1482–1485.CrossRef
14.
Zurück zum Zitat Jafari, M., et al. (2017). Design and implementation of a six-port junction based on substrate integrated waveguide. Turkish Journal of Electrical Engineering & Computer Sciences, 25(3), 2547–2553.CrossRef Jafari, M., et al. (2017). Design and implementation of a six-port junction based on substrate integrated waveguide. Turkish Journal of Electrical Engineering & Computer Sciences, 25(3), 2547–2553.CrossRef
15.
Zurück zum Zitat Fu, Z., & Fan, Y. (2014). Reconfigurable slotted patch antenna controlled by thermal switch for temperature monitoring. In Antennas and propagation society international symposium (APSURSI), IEEE. Fu, Z., & Fan, Y. (2014). Reconfigurable slotted patch antenna controlled by thermal switch for temperature monitoring. In Antennas and propagation society international symposium (APSURSI), IEEE.
16.
Zurück zum Zitat Rajagopalan, Harish, Kovitz, Joshua M., & Rahmat-Samii, Yahya. (2014). MEMS reconfigurable optimized E-shaped patch antenna design for cognitive radio. IEEE Transactions on Antennas and Propagation, 62(3), 1056–1064.CrossRef Rajagopalan, Harish, Kovitz, Joshua M., & Rahmat-Samii, Yahya. (2014). MEMS reconfigurable optimized E-shaped patch antenna design for cognitive radio. IEEE Transactions on Antennas and Propagation, 62(3), 1056–1064.CrossRef
17.
Zurück zum Zitat Erdil, E., et al. (2007). Frequency tunable microstrip patch antenna using RF MEMS technology. IEEE Transactions on Antennas and Propagation, 55(4), 1193–1196.CrossRef Erdil, E., et al. (2007). Frequency tunable microstrip patch antenna using RF MEMS technology. IEEE Transactions on Antennas and Propagation, 55(4), 1193–1196.CrossRef
18.
Zurück zum Zitat Tawk, Y., et al. (2010). Optically pumped frequency reconfigurable antenna design. IEEE Antennas and Wireless Propagation Letters, 9, 280–283.CrossRef Tawk, Y., et al. (2010). Optically pumped frequency reconfigurable antenna design. IEEE Antennas and Wireless Propagation Letters, 9, 280–283.CrossRef
19.
Zurück zum Zitat Lotfi, Parisa, Azarmanesh, Mohammadnaghi, & Soltani, Saber. (2013). Rotatable dual band-notched UWB/triple-band WLAN reconfigurable antenna. IEEE Antennas and Wireless Propagation Letters, 12, 104–107.CrossRef Lotfi, Parisa, Azarmanesh, Mohammadnaghi, & Soltani, Saber. (2013). Rotatable dual band-notched UWB/triple-band WLAN reconfigurable antenna. IEEE Antennas and Wireless Propagation Letters, 12, 104–107.CrossRef
20.
Zurück zum Zitat Chaudhary, P., & Sudhanshu, V. A swtichable frequency reconfigurable UWB antenna for cognitive radio application. In 2018 second international conference on electronics, communication and aerospace technology (ICECA). IEEE. Chaudhary, P., & Sudhanshu, V. A swtichable frequency reconfigurable UWB antenna for cognitive radio application. In 2018 second international conference on electronics, communication and aerospace technology (ICECA). IEEE.
21.
Zurück zum Zitat Wang, W, et al. (2018). A reconfigurable analog baseband for ka band transmitter. In 2018 IEEE international conference on electron devices and solid state circuits (EDSSC). IEEE Wang, W, et al. (2018). A reconfigurable analog baseband for ka band transmitter. In 2018 IEEE international conference on electron devices and solid state circuits (EDSSC). IEEE
22.
Zurück zum Zitat Tawk, Y., Costantine, J., & Christodoulou, C. G. (2010). A frequency reconfigurable rotatable microstrip antenna design. In Antennas and propagation society international symposium (APSURSI), IEEE. Tawk, Y., Costantine, J., & Christodoulou, C. G. (2010). A frequency reconfigurable rotatable microstrip antenna design. In Antennas and propagation society international symposium (APSURSI), IEEE.
23.
Zurück zum Zitat Tawk, Y., & Christodoulou, C. G. (2009). A cellular automaton reconfigurable microstrip antenna design. In Antennas and propagation society international symposium, 2009. APSURSI’09. IEEE. Tawk, Y., & Christodoulou, C. G. (2009). A cellular automaton reconfigurable microstrip antenna design. In Antennas and propagation society international symposium, 2009. APSURSI’09. IEEE.
24.
Zurück zum Zitat Mansoul, A., et al. (2014). A selective frequency-reconfigurable antenna for cognitive radio applications. IEEE Antennas and Wireless Propagation Letters, 13, 515–518.CrossRef Mansoul, A., et al. (2014). A selective frequency-reconfigurable antenna for cognitive radio applications. IEEE Antennas and Wireless Propagation Letters, 13, 515–518.CrossRef
25.
Zurück zum Zitat Ghosh, S., & Sungjoon, L. (2018). Fluidically switchable metasurface for wide spectrum absorption. Scientific Reports, 8(1), 10169.CrossRef Ghosh, S., & Sungjoon, L. (2018). Fluidically switchable metasurface for wide spectrum absorption. Scientific Reports, 8(1), 10169.CrossRef
26.
Zurück zum Zitat AL-Fadhali, N., et al. (2020). Substrate integrated waveguide cavity backed frequency reconfigurable antenna for cognitive radio applies to internet of things applications. International Journal of RF and Microwave Computer-Aided Engineering, 30(1), e22020.CrossRef AL-Fadhali, N., et al. (2020). Substrate integrated waveguide cavity backed frequency reconfigurable antenna for cognitive radio applies to internet of things applications. International Journal of RF and Microwave Computer-Aided Engineering, 30(1), e22020.CrossRef
27.
Zurück zum Zitat Mansoul, A., & Farid G. (2018). Frequency reconfigurable antenna for cognitive radios with sequential UWB mode of perception and multiband mode of operation. International Journal of Microwave and Wireless Technologies, pp. 1–7. Mansoul, A., & Farid G. (2018). Frequency reconfigurable antenna for cognitive radios with sequential UWB mode of perception and multiband mode of operation. International Journal of Microwave and Wireless Technologies, pp. 1–7.
28.
Zurück zum Zitat Saghati, A. P., & Kamran, E. (2013). A reconfigurable SIW cavity-backed slot antenna with one octave tuning range. IEEE Transactions on Antennas and Propagation, 61(8), 3937–3945.CrossRef Saghati, A. P., & Kamran, E. (2013). A reconfigurable SIW cavity-backed slot antenna with one octave tuning range. IEEE Transactions on Antennas and Propagation, 61(8), 3937–3945.CrossRef
29.
Zurück zum Zitat Haykin, Simon. (2005). Cognitive radio: brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRef Haykin, Simon. (2005). Cognitive radio: brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRef
30.
Zurück zum Zitat Alnahwi, F., et al. (2019). A compact wide-slot UWB antenna with reconfigurable and sharp dual-band notches for underlay cognitive radio applications. Turkish Journal of Electrical Engineering & Computer Sciences, 27(1), 94–105.CrossRef Alnahwi, F., et al. (2019). A compact wide-slot UWB antenna with reconfigurable and sharp dual-band notches for underlay cognitive radio applications. Turkish Journal of Electrical Engineering & Computer Sciences, 27(1), 94–105.CrossRef
31.
Zurück zum Zitat Koley, Santasri, & Mitra, Debjani. (2017). A frequency-reconfigurable elliptical monopole antenna for cognitive radio networks. Turkish Journal of Electrical Engineering & Computer Sciences, 25(3), 2535–2546. Koley, Santasri, & Mitra, Debjani. (2017). A frequency-reconfigurable elliptical monopole antenna for cognitive radio networks. Turkish Journal of Electrical Engineering & Computer Sciences, 25(3), 2535–2546.
32.
Zurück zum Zitat Sharma, S., & Chandra C. T. (2017). An integrated frequency reconfigurable antenna for cognitive radio application. Radioengineering, vol. 26, no. 3. Sharma, S., & Chandra C. T. (2017). An integrated frequency reconfigurable antenna for cognitive radio application. Radioengineering, vol. 26, no. 3.
33.
Zurück zum Zitat Ghaderi, Mahdieh, Zahedi, Amir, & Abbasi-Arand, Bijan. (2019). Substrate integrated waveguide leaky wave antenna with tuned placement of meandering long slot. International Journal of Electronics Letters, 7(2), 224–235.CrossRef Ghaderi, Mahdieh, Zahedi, Amir, & Abbasi-Arand, Bijan. (2019). Substrate integrated waveguide leaky wave antenna with tuned placement of meandering long slot. International Journal of Electronics Letters, 7(2), 224–235.CrossRef
34.
Zurück zum Zitat Joseph, S. D., et al. (2017). UWB sensing antenna, reconfigurable transceiver and reconfigurable antenna based cognitive radio test bed. Wireless Personal Communications, 96(3), 3435–3462.CrossRef Joseph, S. D., et al. (2017). UWB sensing antenna, reconfigurable transceiver and reconfigurable antenna based cognitive radio test bed. Wireless Personal Communications, 96(3), 3435–3462.CrossRef
35.
Zurück zum Zitat Najib, A. -F. et al. (2019). Ultra-wideband (50–60 GHz) mm-wave substrate integrated waveguide (SIW) antenna for 5G applications. In: 2019 IEEE 10th control and system graduate research colloquium (ICSGRC). IEEE. Najib, A. -F. et al. (2019). Ultra-wideband (50–60 GHz) mm-wave substrate integrated waveguide (SIW) antenna for 5G applications. In: 2019 IEEE 10th control and system graduate research colloquium (ICSGRC). IEEE.
36.
Zurück zum Zitat Al-Fadhali, N., et al. (2019). Wideband (22–30 GHz) mm-wave substrate integrated waveguide (SIW) antenna for 5G applications. In 2019 IEEE conference on antenna measurements & applications (CAMA). IEEE. Al-Fadhali, N., et al. (2019). Wideband (22–30 GHz) mm-wave substrate integrated waveguide (SIW) antenna for 5G applications. In 2019 IEEE conference on antenna measurements & applications (CAMA). IEEE.
37.
Zurück zum Zitat AL-Fadhali, N. M., Majidd, A., Omar, H. A., et al. (2019). A compact ultra-wideband (42–54 GHz) mm-wave substrate integrated waveguide (SIW) cavity slot antenna for of future wireless communications. International Journal of Innovative Technology Exploring Engineering (IJITEE), 8(9), 548–552.CrossRef AL-Fadhali, N. M., Majidd, A., Omar, H. A., et al. (2019). A compact ultra-wideband (42–54 GHz) mm-wave substrate integrated waveguide (SIW) cavity slot antenna for of future wireless communications. International Journal of Innovative Technology Exploring Engineering (IJITEE), 8(9), 548–552.CrossRef
Metadaten
Titel
Multiband frequency reconfigurable substrate integrated waveguide antenna using copper strip for cognitive radio applicable to internet of things application
verfasst von
Najib AL-Fadhali
Huda Majid
Rosli Omar
Publikationsdatum
05.10.2020
Verlag
Springer US
Erschienen in
Telecommunication Systems / Ausgabe 3/2021
Print ISSN: 1018-4864
Elektronische ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-020-00721-6

Weitere Artikel der Ausgabe 3/2021

Telecommunication Systems 3/2021 Zur Ausgabe