Skip to main content
Erschienen in: Telecommunication Systems 2/2022

16.11.2021

Secrecy performance analysis of half/full duplex AF/DF relaying in NOMA systems over \(\kappa -\mu \) fading channels

verfasst von: Nesrine Zaghdoud, Adel Ben Mnaouer, Hatem Boujemaa, Farid Touati

Erschienen in: Telecommunication Systems | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Although the progress in understanding 5G and beyond techniques such as Non-Orthogonal Multiple Access (NOMA) and full-duplex techniques has been overwhelming, still analyzing the security aspects of such systems under different scenarios and settings is an important concern that needs further exploration. In particular, when considering fading in wiretap channels and scenarios, achieving secrecy has posed many challenges. In this context, we propose to study the physical layer security (PLS) of cooperative NOMA (C-NOMA) system using the general fading distribution \(\kappa \)-\(\mu \). This distribution facilitates mainly the effect of light-of-sight as well as multipath fading. It also includes multiple distributions as special cases like: Rayleigh, Rice, Nakagami-m which help to understand the comportment of C-NOMA systems under different fading parameters. The use of Half-Duplex and Full-Duplex communication is also investigated for both Amplify-and-forward (AF) and Decode-and-Forward (DF) relaying protocols. To characterize the secrecy performance of the proposed C-NOMA systems, closed form expressions of the Secrecy Outage Probability (SOP) and the Strictly Positive Secrcey Capacity (SPSC) metrics for the strong and weak users are given for high signal-to-noise ratio (SNR) due to the intractable nature of the exact expressions. Based on the analytical analysis, numerical and simulation results are given under different network parameters. The results show, for low eavesdropper SNR, the positive effect of fading on the secrecy of the NOMA system. Whereas, fading deteriorates more the system secrecy with high eavesdropper SNR. We also deduce that FD relaying gives better secrecy to the weak user. While, more secrecy is granted to the strong user when using HD relaying.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Vaezi, M., Ding, Z., & Poor, H. V. (Eds.). (2019). Multiple access techniques for 5G wireless networks and beyond. Berlin: Springer. Vaezi, M., Ding, Z., & Poor, H. V. (Eds.). (2019). Multiple access techniques for 5G wireless networks and beyond. Berlin: Springer.
2.
Zurück zum Zitat Dai, L., Wang, B., Ding, Z., Wang, Z., Chen, S., & Hanzo, L. (2018). A survey of non-orthogonal multiple access for 5G. IEEE Communications Surveys and Tutorials, 20(3), 2294–2323.CrossRef Dai, L., Wang, B., Ding, Z., Wang, Z., Chen, S., & Hanzo, L. (2018). A survey of non-orthogonal multiple access for 5G. IEEE Communications Surveys and Tutorials, 20(3), 2294–2323.CrossRef
3.
Zurück zum Zitat Liu, Y., Qin, Z., & Ding, Z. (2020). Non-orthogonal multiple access for massive connectivity. Berlin: Springer.CrossRef Liu, Y., Qin, Z., & Ding, Z. (2020). Non-orthogonal multiple access for massive connectivity. Berlin: Springer.CrossRef
4.
Zurück zum Zitat Higuchi, K., & Benjebbour, A. (2015). Non-orthogonal multiple access (NOMA) with successive interference cancellation for future radio access. IEICE Transactions on Communications, 98(3), 403–414.CrossRef Higuchi, K., & Benjebbour, A. (2015). Non-orthogonal multiple access (NOMA) with successive interference cancellation for future radio access. IEICE Transactions on Communications, 98(3), 403–414.CrossRef
5.
6.
Zurück zum Zitat Ding, Z., Peng, M., & Poor, H. V. (2015). Cooperative non-orthogonal multiple access in 5G systems. IEEE Communications Letters, 19(8), 1462–1465.CrossRef Ding, Z., Peng, M., & Poor, H. V. (2015). Cooperative non-orthogonal multiple access in 5G systems. IEEE Communications Letters, 19(8), 1462–1465.CrossRef
7.
Zurück zum Zitat Liaqat, M., Noordin, K. A., Latef, T. A., & Dimyati, K. (2020). Power-domain non orthogonal multiple access (PD-NOMA) in cooperative networks: an overview. Wireless Networks, 26(1), 181–203.CrossRef Liaqat, M., Noordin, K. A., Latef, T. A., & Dimyati, K. (2020). Power-domain non orthogonal multiple access (PD-NOMA) in cooperative networks: an overview. Wireless Networks, 26(1), 181–203.CrossRef
8.
Zurück zum Zitat Fitzek, F. H., & Katz, M. D. (2006). Cooperation in wireless networks: principles and applications (421–461). New York: Springer.CrossRef Fitzek, F. H., & Katz, M. D. (2006). Cooperation in wireless networks: principles and applications (421–461). New York: Springer.CrossRef
9.
Zurück zum Zitat Boujemâa, H. (2011). Static hybrid amplify and forward (AF) and decode and forward (DF) relaying for cooperative systems. Physical Communication, 4(3), 196–205.CrossRef Boujemâa, H. (2011). Static hybrid amplify and forward (AF) and decode and forward (DF) relaying for cooperative systems. Physical Communication, 4(3), 196–205.CrossRef
10.
Zurück zum Zitat Kim, J. B., & Lee, I. H. (2015). Capacity analysis of cooperative relaying systems using non-orthogonal multiple access. IEEE Communications Letters, 19(11), 1949–1952.CrossRef Kim, J. B., & Lee, I. H. (2015). Capacity analysis of cooperative relaying systems using non-orthogonal multiple access. IEEE Communications Letters, 19(11), 1949–1952.CrossRef
11.
Zurück zum Zitat Liang, X., Wu, Y., Ng, D. W. K., Zuo, Y., Jin, S., & Zhu, H. (2017). Outage performance for cooperative NOMA transmission with an AF relay. IEEE Communications Letters, 21(11), 2428–2431.CrossRef Liang, X., Wu, Y., Ng, D. W. K., Zuo, Y., Jin, S., & Zhu, H. (2017). Outage performance for cooperative NOMA transmission with an AF relay. IEEE Communications Letters, 21(11), 2428–2431.CrossRef
12.
Zurück zum Zitat Yang, Z., Ding, Z., Wu, Y., & Fan, P. (2017). Novel relay selection strategies for cooperative NOMA. IEEE Transactions on Vehicular Technology, 66(11), 10114–10123.CrossRef Yang, Z., Ding, Z., Wu, Y., & Fan, P. (2017). Novel relay selection strategies for cooperative NOMA. IEEE Transactions on Vehicular Technology, 66(11), 10114–10123.CrossRef
13.
Zurück zum Zitat Men, J., Ge, J., & Zhang, C. (2016). Performance analysis of non orthogonal multiple access for relaying networks over Nakagami-\(m\) fading channels. IEEE Transactions on Vehicular Technology, 66(2), 1200–1208.CrossRef Men, J., Ge, J., & Zhang, C. (2016). Performance analysis of non orthogonal multiple access for relaying networks over Nakagami-\(m\) fading channels. IEEE Transactions on Vehicular Technology, 66(2), 1200–1208.CrossRef
14.
Zurück zum Zitat Zhong, C., & Zhang, Z. (2016). Non-orthogonal multiple access with cooperative full-duplex relaying. IEEE Communications Letters, 20(12), 2478–2481.CrossRef Zhong, C., & Zhang, Z. (2016). Non-orthogonal multiple access with cooperative full-duplex relaying. IEEE Communications Letters, 20(12), 2478–2481.CrossRef
15.
Zurück zum Zitat Chu, T. M. C., & Zepernick, H. J. (2018). Performance of a non-orthogonal multiple access system with full-duplex relaying. IEEE Communications Letters, 22(10), 2084–2087.CrossRef Chu, T. M. C., & Zepernick, H. J. (2018). Performance of a non-orthogonal multiple access system with full-duplex relaying. IEEE Communications Letters, 22(10), 2084–2087.CrossRef
17.
Zurück zum Zitat Tregancini, A., Olivo, E. E. B., Osorio, D. P. M., de Lima, C. H., & Alves, H. (2019). Performance analysis of full-duplex relay-aided NOMA systems using partial relay selection. IEEE Transactions on Vehicular Technology, 69(1), 622–635.CrossRef Tregancini, A., Olivo, E. E. B., Osorio, D. P. M., de Lima, C. H., & Alves, H. (2019). Performance analysis of full-duplex relay-aided NOMA systems using partial relay selection. IEEE Transactions on Vehicular Technology, 69(1), 622–635.CrossRef
19.
Zurück zum Zitat Mavoungou, S., Kaddoum, G., Taha, M., & Matar, G. (2016). Survey on threats and attacks on mobile networks. IEEE Access, 4, 4543–4572.CrossRef Mavoungou, S., Kaddoum, G., Taha, M., & Matar, G. (2016). Survey on threats and attacks on mobile networks. IEEE Access, 4, 4543–4572.CrossRef
20.
Zurück zum Zitat Zou, Y., Zhu, J., Wang, X., & Hanzo, L. (2016). A survey on wireless security: Technical challenges, recent advances, and future trends. Proceedings of the IEEE, 104(9), 1727–1765.CrossRef Zou, Y., Zhu, J., Wang, X., & Hanzo, L. (2016). A survey on wireless security: Technical challenges, recent advances, and future trends. Proceedings of the IEEE, 104(9), 1727–1765.CrossRef
22.
Zurück zum Zitat Trappe, W., Howard, R., & Moore, R. S. (2015). Low-energy security: Limits and opportunities in the internet of things. IEEE Security and Privacy, 13(1), 14–21.CrossRef Trappe, W., Howard, R., & Moore, R. S. (2015). Low-energy security: Limits and opportunities in the internet of things. IEEE Security and Privacy, 13(1), 14–21.CrossRef
23.
Zurück zum Zitat Shannon, C. E. (1949). Communication theory of secrecy systems. The Bell System Technical Journal, 28(4), 656–715.CrossRef Shannon, C. E. (1949). Communication theory of secrecy systems. The Bell System Technical Journal, 28(4), 656–715.CrossRef
24.
Zurück zum Zitat Wyner, A. D. (1975). The wire-tap channel. Bell System Technical Journal, 54(8), 1355–1387.CrossRef Wyner, A. D. (1975). The wire-tap channel. Bell System Technical Journal, 54(8), 1355–1387.CrossRef
25.
Zurück zum Zitat Fang, D., Qian, Y., & Hu, R. Q. (2017). Security for 5G mobile wireless networks. IEEE Access, 6, 4850–4874.CrossRef Fang, D., Qian, Y., & Hu, R. Q. (2017). Security for 5G mobile wireless networks. IEEE Access, 6, 4850–4874.CrossRef
26.
Zurück zum Zitat Ahmad, I., Kumar, T., Liyanage, M., Okwuibe, J., Ylianttila, M., & Gurtov, A. (2018). Overview of 5G security challenges and solutions. IEEE Communications Standards Magazine, 2(1), 36–43.CrossRef Ahmad, I., Kumar, T., Liyanage, M., Okwuibe, J., Ylianttila, M., & Gurtov, A. (2018). Overview of 5G security challenges and solutions. IEEE Communications Standards Magazine, 2(1), 36–43.CrossRef
27.
Zurück zum Zitat Khan, R., Kumar, P., Jayakody, D. N. K., & Liyanage, M. (2019). A survey on security and privacy of 5G technologies: Potential solutions, recent advancements, and future directions. IEEE Communications Surveys and Tutorials, 22(1), 196–248.CrossRef Khan, R., Kumar, P., Jayakody, D. N. K., & Liyanage, M. (2019). A survey on security and privacy of 5G technologies: Potential solutions, recent advancements, and future directions. IEEE Communications Surveys and Tutorials, 22(1), 196–248.CrossRef
28.
Zurück zum Zitat Chen, J., Yang, L., & Alouini, M. S. (2018). Physical layer security for cooperative NOMA systems. IEEE Transactions on Vehicular Technology, 67(5), 4645–4649.CrossRef Chen, J., Yang, L., & Alouini, M. S. (2018). Physical layer security for cooperative NOMA systems. IEEE Transactions on Vehicular Technology, 67(5), 4645–4649.CrossRef
30.
Zurück zum Zitat Yu, C., Ko, H. L., Peng, X., & Xie, W. (2019). Secrecy outage performance analysis for cooperative NOMA over Nakagami-\( m \) channel. IEEE Access, 7, 79866–79876.CrossRef Yu, C., Ko, H. L., Peng, X., & Xie, W. (2019). Secrecy outage performance analysis for cooperative NOMA over Nakagami-\( m \) channel. IEEE Access, 7, 79866–79876.CrossRef
34.
Zurück zum Zitat Cao, Y., Zhao, N., Pan, G., Chen, Y., Fan, L., Jin, M., & Alouini, M. S. (2019). Secrecy analysis for cooperative NOMA networks with multi-antenna full-duplex relay. IEEE Transactions on Communications, 67(8), 5574–5587.CrossRef Cao, Y., Zhao, N., Pan, G., Chen, Y., Fan, L., Jin, M., & Alouini, M. S. (2019). Secrecy analysis for cooperative NOMA networks with multi-antenna full-duplex relay. IEEE Transactions on Communications, 67(8), 5574–5587.CrossRef
35.
Zurück zum Zitat Bloch, M., Barros, J., Rodrigues, M. R., & McLaughlin, S. W. (2008). Wireless information-theoretic security. IEEE Transactions on Information Theory, 54(6), 2515–2534.CrossRef Bloch, M., Barros, J., Rodrigues, M. R., & McLaughlin, S. W. (2008). Wireless information-theoretic security. IEEE Transactions on Information Theory, 54(6), 2515–2534.CrossRef
37.
Zurück zum Zitat Yacoub, M. D. (2007). The \(\kappa -\mu \) distribution and the \(\eta -\mu \) distribution. IEEE Antennas and Propagation Magazine, 49(1), 68–81.CrossRef Yacoub, M. D. (2007). The \(\kappa -\mu \) distribution and the \(\eta -\mu \) distribution. IEEE Antennas and Propagation Magazine, 49(1), 68–81.CrossRef
38.
Zurück zum Zitat Fikadu, M. K., Sofotasios, P. C., Valkama, M., Muhaidat, S., Cui, Q., & Karagiannidis, G. K. (2015). Outage probability analysis of dual-hop full-duplex decode-and-forward relaying over generalized multipath fading conditions. In IEEE 11th international conference on wireless and mobile computing, networking and communications (WiMob), https://doi.org/10.1109/WiMOB.2015.7347992. Fikadu, M. K., Sofotasios, P. C., Valkama, M., Muhaidat, S., Cui, Q., & Karagiannidis, G. K. (2015). Outage probability analysis of dual-hop full-duplex decode-and-forward relaying over generalized multipath fading conditions. In IEEE 11th international conference on wireless and mobile computing, networking and communications (WiMob), https://​doi.​org/​10.​1109/​WiMOB.​2015.​7347992.
39.
Zurück zum Zitat Simon, M. K., & Alouini, M. S. (2005). Digital communication over fading channels (Vol. 95). New Jersey: John Wiley and Sons. Simon, M. K., & Alouini, M. S. (2005). Digital communication over fading channels (Vol. 95). New Jersey: John Wiley and Sons.
40.
Zurück zum Zitat Gradshteyn, I. S., & Ryzhik, I. M. (2015). Table of integrals, series, and products, 8th edn., ed. by D. Zwillinger. Gradshteyn, I. S., & Ryzhik, I. M. (2015). Table of integrals, series, and products, 8th edn., ed. by D. Zwillinger.
41.
Zurück zum Zitat Khoolenjani, N. B., & Khorshidian, K. (2009). On the ratio of Rice random variables. Khoolenjani, N. B., & Khorshidian, K. (2009). On the ratio of Rice random variables.
42.
Zurück zum Zitat Prudnikov, A. P., Brychkov, Y. A., & Marichev, O. I. (1986). Integrals and series, Volume 1: Elementary functions. New York: Gordon and Breach Science Publisher. Prudnikov, A. P., Brychkov, Y. A., & Marichev, O. I. (1986). Integrals and series, Volume 1: Elementary functions. New York: Gordon and Breach Science Publisher.
43.
Zurück zum Zitat Prudnikov, A. P., Brychkov, I. A., & Marichev, O. I. (1986). Integrals and series: Special functions (Vol. 2). Boca Raton: CRC Press. Prudnikov, A. P., Brychkov, I. A., & Marichev, O. I. (1986). Integrals and series: Special functions (Vol. 2). Boca Raton: CRC Press.
Metadaten
Titel
Secrecy performance analysis of half/full duplex AF/DF relaying in NOMA systems over fading channels
verfasst von
Nesrine Zaghdoud
Adel Ben Mnaouer
Hatem Boujemaa
Farid Touati
Publikationsdatum
16.11.2021
Verlag
Springer US
Erschienen in
Telecommunication Systems / Ausgabe 2/2022
Print ISSN: 1018-4864
Elektronische ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-021-00851-5

Weitere Artikel der Ausgabe 2/2022

Telecommunication Systems 2/2022 Zur Ausgabe

Neuer Inhalt