Skip to main content
Erschienen in: Tribology Letters 2/2017

01.06.2017 | Methods paper

On Stress-Induced Tribochemical Reaction Rates

verfasst von: Wilfred Tysoe

Erschienen in: Tribology Letters | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A number of recent experiments have demonstrated that normal and shear stresses are able to accelerate the rates of chemical reactions of adsorbates on surfaces, yielding an approximately exponential increase in reaction rate with force. It seems that such mechanochemical reactions play a central role in tribochemistry and the consequent formation of anti-wear or friction-reducing films from lubricant additives. It is thus appropriate to summarize the theories that can be used to analyse such tribochemical data. The models have a strong parallel with those used to analyse sliding friction, the Prandtl/Tomlinson model. It is found that the force-dependent activation barrier for chemical reactions varies as \(E_{\text{act}} (F) = E_{\text{act}} + AF + BF^{2}\). The linear variation in activation barrier with force, the so-called Bell equation, and the quadratic dependence, the so-called Hammond effect, are analysed using model reaction energy profiles, which reveal a dependence of the parameters A and B on the shape of the energy profile. The influence of contact pressure and sliding velocity is also discussed. The above models assume that the normal and shear stresses are coplanar with the thermal reaction coordinate for the tribochemical processes, and the effects of this not being the case are also discussed. Finally, the existing results of tribochemical reactions of oxygen-functionalized graphene and zinc dialkyl dithiophosphates are also analysed using these models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mang, T., Dresel, W.: Lubricants and Lubrications. Wiley-VCH, Weinheim (2001) Mang, T., Dresel, W.: Lubricants and Lubrications. Wiley-VCH, Weinheim (2001)
2.
Zurück zum Zitat Rudnick, L.R.: Lubricant Additives: Chemistry and Applications. M. Dekker, New York (2003)CrossRef Rudnick, L.R.: Lubricant Additives: Chemistry and Applications. M. Dekker, New York (2003)CrossRef
3.
Zurück zum Zitat Yin, Z., Kasrai, M., Fuller, M., Bancroft, G.M., Fyfe, K., Tan, K.H.: Application of soft X-ray absorption spectroscopy in chemical characterization of antiwear films generated by ZDDP part I: the effects of physical parameters. Wear 202(2), 172–191 (1997)CrossRef Yin, Z., Kasrai, M., Fuller, M., Bancroft, G.M., Fyfe, K., Tan, K.H.: Application of soft X-ray absorption spectroscopy in chemical characterization of antiwear films generated by ZDDP part I: the effects of physical parameters. Wear 202(2), 172–191 (1997)CrossRef
4.
Zurück zum Zitat Kajdas, C., Hiratsuka, K.: Tribochemistry, tribocatalysis, and the negative-ion-radical action mechanism. Proc. Inst. Mech. Eng. J J. Eng. 223(6), 827–848 (2009)CrossRef Kajdas, C., Hiratsuka, K.: Tribochemistry, tribocatalysis, and the negative-ion-radical action mechanism. Proc. Inst. Mech. Eng. J J. Eng. 223(6), 827–848 (2009)CrossRef
5.
Zurück zum Zitat Mosey, N.J., Woo, T.K., Kasrai, M., Norton, P.R., Bancroft, G.M., Müser, M.H.: Interpretation of experiments on ZDDP anti-wear films through pressure-induced cross-linking. Tribol. Lett. 24(2), 105–114 (2006)CrossRef Mosey, N.J., Woo, T.K., Kasrai, M., Norton, P.R., Bancroft, G.M., Müser, M.H.: Interpretation of experiments on ZDDP anti-wear films through pressure-induced cross-linking. Tribol. Lett. 24(2), 105–114 (2006)CrossRef
6.
Zurück zum Zitat Kotvis, P.V., Tysoe, W.T.: Surface chemistry of chlorinated hydrocarbon lubricant additives—part I: extreme-pressure tribology. Tribol. Trans. 41(1), 117–123 (1998)CrossRef Kotvis, P.V., Tysoe, W.T.: Surface chemistry of chlorinated hydrocarbon lubricant additives—part I: extreme-pressure tribology. Tribol. Trans. 41(1), 117–123 (1998)CrossRef
7.
Zurück zum Zitat Blunt, T.J., Kotvis, P.V., Tysoe, W.T.: Surface chemistry of chlorinated hydrocarbon lubricant additives—part II: modeling the tribological interface. Tribol. Trans. 41(1), 129–139 (1998)CrossRef Blunt, T.J., Kotvis, P.V., Tysoe, W.T.: Surface chemistry of chlorinated hydrocarbon lubricant additives—part II: modeling the tribological interface. Tribol. Trans. 41(1), 129–139 (1998)CrossRef
8.
Zurück zum Zitat Beyer, M.K., Clausen-Schaumann, H.: Mechanochemistry: the mechanical activation of covalent bonds. Chem. Rev. 105(8), 2921–2948 (2005)CrossRef Beyer, M.K., Clausen-Schaumann, H.: Mechanochemistry: the mechanical activation of covalent bonds. Chem. Rev. 105(8), 2921–2948 (2005)CrossRef
9.
Zurück zum Zitat Boldyrev, V.V., Tkáčová, K.: Mechanochemistry of solids: past, present, and prospects. J. Mater. Synth. Process. 8(3), 121–132 (2000)CrossRef Boldyrev, V.V., Tkáčová, K.: Mechanochemistry of solids: past, present, and prospects. J. Mater. Synth. Process. 8(3), 121–132 (2000)CrossRef
10.
Zurück zum Zitat Levitas, V.I.: High-pressure mechanochemistry: conceptual multiscale theory and interpretation of experiments. Phys. Rev. B 70(18), 184118 (2004)CrossRef Levitas, V.I.: High-pressure mechanochemistry: conceptual multiscale theory and interpretation of experiments. Phys. Rev. B 70(18), 184118 (2004)CrossRef
11.
Zurück zum Zitat Kipp, S., Šepelák, V., Becker, K.D.: Mechanochemie: chemie mit dem Hammer. Chem. unserer Zeit 39(6), 384–392 (2005)CrossRef Kipp, S., Šepelák, V., Becker, K.D.: Mechanochemie: chemie mit dem Hammer. Chem. unserer Zeit 39(6), 384–392 (2005)CrossRef
12.
Zurück zum Zitat Todres, Z.V.: Organic Mechanochemistry and its Practical Applications. Taylor & Francis, Boca Raton (2006) Todres, Z.V.: Organic Mechanochemistry and its Practical Applications. Taylor & Francis, Boca Raton (2006)
13.
Zurück zum Zitat Rosen, B.M., Percec, V.: Mechanochemistry: a reaction to stress. Nature 446(7134), 381–382 (2007)CrossRef Rosen, B.M., Percec, V.: Mechanochemistry: a reaction to stress. Nature 446(7134), 381–382 (2007)CrossRef
14.
Zurück zum Zitat Mitchenko, S.A.: Mechanochemistry in heterogeneous catalysis. Theor. Exp. Chem. 43(4), 211–228 (2007)CrossRef Mitchenko, S.A.: Mechanochemistry in heterogeneous catalysis. Theor. Exp. Chem. 43(4), 211–228 (2007)CrossRef
15.
Zurück zum Zitat Konôpka, M., Turanský, R., Dubecký, M., Marx, D., Štich, I.: Molecular mechanochemistry understood at the nanoscale: thiolate interfaces and junctions with copper surfaces and clusters. J. Phys. Chem. C 113(20), 8878–8887 (2009)CrossRef Konôpka, M., Turanský, R., Dubecký, M., Marx, D., Štich, I.: Molecular mechanochemistry understood at the nanoscale: thiolate interfaces and junctions with copper surfaces and clusters. J. Phys. Chem. C 113(20), 8878–8887 (2009)CrossRef
16.
Zurück zum Zitat Craig, S.L.: Mechanochemistry: a tour of force. Nature 487(7406), 176–177 (2012)CrossRef Craig, S.L.: Mechanochemistry: a tour of force. Nature 487(7406), 176–177 (2012)CrossRef
17.
Zurück zum Zitat Mazyar, O.A., Xie, H., Hase, W.L.: Nonequilibrium energy dissipation at the interface of sliding model hydroxylated alpha-alumina surfaces. J. Chem. Phys. 122(9), 094713 (2005). doi:10.1063/1.1858856 CrossRef Mazyar, O.A., Xie, H., Hase, W.L.: Nonequilibrium energy dissipation at the interface of sliding model hydroxylated alpha-alumina surfaces. J. Chem. Phys. 122(9), 094713 (2005). doi:10.​1063/​1.​1858856 CrossRef
18.
19.
Zurück zum Zitat Kalin, M., Vižintin, J.: Comparison of different theoretical models for flash temperature calculation under fretting conditions. Tribol. Int. 34(12), 831–839 (2001)CrossRef Kalin, M., Vižintin, J.: Comparison of different theoretical models for flash temperature calculation under fretting conditions. Tribol. Int. 34(12), 831–839 (2001)CrossRef
20.
Zurück zum Zitat Smith, E.H., Arnell, R.D.: A new approach to the calculation of flash temperatures in dry, sliding contacts. Tribol. Lett. 52(3), 407–414 (2013)CrossRef Smith, E.H., Arnell, R.D.: A new approach to the calculation of flash temperatures in dry, sliding contacts. Tribol. Lett. 52(3), 407–414 (2013)CrossRef
21.
Zurück zum Zitat Gosvami, N.N., Bares, J.A., Mangolini, F., Konicek, A.R., Yablon, D.G., Carpick, R.W.: Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts. Science 348(6230), 102–106 (2015)CrossRef Gosvami, N.N., Bares, J.A., Mangolini, F., Konicek, A.R., Yablon, D.G., Carpick, R.W.: Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts. Science 348(6230), 102–106 (2015)CrossRef
22.
Zurück zum Zitat Spikes, H.: The history and mechanisms of ZDDP. Tribol. Lett. 17(3), 469–489 (2004)CrossRef Spikes, H.: The history and mechanisms of ZDDP. Tribol. Lett. 17(3), 469–489 (2004)CrossRef
23.
Zurück zum Zitat Zhang, J., Spikes, H.: On the mechanism of ZDDP antiwear film formation. Tribol. Lett. 63(2), 1–15 (2016)CrossRef Zhang, J., Spikes, H.: On the mechanism of ZDDP antiwear film formation. Tribol. Lett. 63(2), 1–15 (2016)CrossRef
24.
Zurück zum Zitat Felts, J.R., Oyer, A.J., Hernández, S.C., Whitener Jr., K.E., Robinson, J.T., Walton, S.G., Sheehan, P.E.: Direct mechanochemical cleavage of functional groups from graphene. Nat. Commun. 6, 6467 (2015)CrossRef Felts, J.R., Oyer, A.J., Hernández, S.C., Whitener Jr., K.E., Robinson, J.T., Walton, S.G., Sheehan, P.E.: Direct mechanochemical cleavage of functional groups from graphene. Nat. Commun. 6, 6467 (2015)CrossRef
25.
Zurück zum Zitat Adams, H.L., Garvey, M.T., Ramasamy, U.S., Ye, Z., Martini, A., Tysoe, W.T.: Shear-induced mechanochemistry: pushing molecules around. J. Phys. Chem. C 119(13), 7115–7123 (2015)CrossRef Adams, H.L., Garvey, M.T., Ramasamy, U.S., Ye, Z., Martini, A., Tysoe, W.T.: Shear-induced mechanochemistry: pushing molecules around. J. Phys. Chem. C 119(13), 7115–7123 (2015)CrossRef
26.
Zurück zum Zitat Adams, H., Miller, B.P., Kotvis, P.V., Furlong, O.J., Martini, A., Tysoe, W.T.: In situ measurements of boundary film formation pathways and kinetics: dimethyl and diethyl disulfide on copper. Tribol. Lett. 62(1), 1–9 (2016)CrossRef Adams, H., Miller, B.P., Kotvis, P.V., Furlong, O.J., Martini, A., Tysoe, W.T.: In situ measurements of boundary film formation pathways and kinetics: dimethyl and diethyl disulfide on copper. Tribol. Lett. 62(1), 1–9 (2016)CrossRef
27.
Zurück zum Zitat Jacobs, T.D.B., Carpick, R.W.: Nanoscale wear as a stress-assisted chemical reaction. Nat. Nanotechnol. 8(2), 108–112 (2013)CrossRef Jacobs, T.D.B., Carpick, R.W.: Nanoscale wear as a stress-assisted chemical reaction. Nat. Nanotechnol. 8(2), 108–112 (2013)CrossRef
28.
Zurück zum Zitat Dong, Y., Li, Q., Martini, A.: Molecular dynamics simulation of atomic friction: A review and guide. J. Vac. Sci. Technol., A 31(3), 030801 (2013)CrossRef Dong, Y., Li, Q., Martini, A.: Molecular dynamics simulation of atomic friction: A review and guide. J. Vac. Sci. Technol., A 31(3), 030801 (2013)CrossRef
29.
Zurück zum Zitat Laidler, K.J.: Chemical Kinetics. McGraw-Hill, New York (1965) Laidler, K.J.: Chemical Kinetics. McGraw-Hill, New York (1965)
30.
Zurück zum Zitat Eyring, H.: The activated complex in chemical reactions. J. Chem. Phys. 3(2), 107–115 (1935)CrossRef Eyring, H.: The activated complex in chemical reactions. J. Chem. Phys. 3(2), 107–115 (1935)CrossRef
31.
Zurück zum Zitat Hill, T.L.: Statistical Mechanics: Principles and Selected Applications. McGraw-Hill, New York (1956) Hill, T.L.: Statistical Mechanics: Principles and Selected Applications. McGraw-Hill, New York (1956)
32.
Zurück zum Zitat Henkelman, G., Uberuaga, B.P., Jonsson, H.: A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901–9904 (2000)CrossRef Henkelman, G., Uberuaga, B.P., Jonsson, H.: A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901–9904 (2000)CrossRef
33.
Zurück zum Zitat Henkelman, G., Jónsson, H.: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113(22), 9978–9985 (2000)CrossRef Henkelman, G., Jónsson, H.: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113(22), 9978–9985 (2000)CrossRef
34.
Zurück zum Zitat Duwez, A.-S., Cuenot, S., Jerome, C., Gabriel, S., Jerome, R., Rapino, S., Zerbetto, F.: Mechanochemistry: targeted delivery of single molecules. Nat. Nanotechnol. 1(2), 122–125 (2006)CrossRef Duwez, A.-S., Cuenot, S., Jerome, C., Gabriel, S., Jerome, R., Rapino, S., Zerbetto, F.: Mechanochemistry: targeted delivery of single molecules. Nat. Nanotechnol. 1(2), 122–125 (2006)CrossRef
35.
Zurück zum Zitat Bailey, A., Mosey, N.J.: Prediction of reaction barriers and force-induced instabilities under mechanochemical conditions with an approximate model: a case study of the ring opening of 1,3-cyclohexadiene. J. Chem. Phys. 136(4), 044102–044111 (2012)CrossRef Bailey, A., Mosey, N.J.: Prediction of reaction barriers and force-induced instabilities under mechanochemical conditions with an approximate model: a case study of the ring opening of 1,3-cyclohexadiene. J. Chem. Phys. 136(4), 044102–044111 (2012)CrossRef
36.
Zurück zum Zitat James, S.L., Adams, C.J., Bolm, C., Braga, D., Collier, P., Friscic, T., Grepioni, F., Harris, K.D.M., Hyett, G., Jones, W., Krebs, A., Mack, J., Maini, L., Orpen, A.G., Parkin, I.P., Shearouse, W.C., Steed, J.W., Waddell, D.C.: Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev. 41(1), 413–447 (2012)CrossRef James, S.L., Adams, C.J., Bolm, C., Braga, D., Collier, P., Friscic, T., Grepioni, F., Harris, K.D.M., Hyett, G., Jones, W., Krebs, A., Mack, J., Maini, L., Orpen, A.G., Parkin, I.P., Shearouse, W.C., Steed, J.W., Waddell, D.C.: Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev. 41(1), 413–447 (2012)CrossRef
37.
Zurück zum Zitat Ribas-Arino, J., Marx, D.: Covalent mechanochemistry: theoretical concepts and computational tools with applications to molecular nanomechanics. Chem. Rev. 112(10), 5412–5487 (2012)CrossRef Ribas-Arino, J., Marx, D.: Covalent mechanochemistry: theoretical concepts and computational tools with applications to molecular nanomechanics. Chem. Rev. 112(10), 5412–5487 (2012)CrossRef
38.
Zurück zum Zitat Makarov, D.E.: Perspective: mechanochemistry of biological and synthetic molecules. J. Chem. Phys. 144(3), 030901 (2016)CrossRef Makarov, D.E.: Perspective: mechanochemistry of biological and synthetic molecules. J. Chem. Phys. 144(3), 030901 (2016)CrossRef
39.
Zurück zum Zitat Spikes, H., Tysoe, W.: On the commonality between theoretical models for fluid and solid friction, wear and tribochemistry. Tribol. Lett. 59(1), 1–14 (2015)CrossRef Spikes, H., Tysoe, W.: On the commonality between theoretical models for fluid and solid friction, wear and tribochemistry. Tribol. Lett. 59(1), 1–14 (2015)CrossRef
40.
Zurück zum Zitat Bell, G.: Models for the specific adhesion of cells to cells. Science 200(4342), 618–627 (1978)CrossRef Bell, G.: Models for the specific adhesion of cells to cells. Science 200(4342), 618–627 (1978)CrossRef
41.
Zurück zum Zitat Konda, S.S.M., Brantley, J.N., Bielawski, C.W., Makarov, D.E.: Chemical reactions modulated by mechanical stress: extended Bell theory. J. Chem. Phys. 135(16), 164103–164108 (2011)CrossRef Konda, S.S.M., Brantley, J.N., Bielawski, C.W., Makarov, D.E.: Chemical reactions modulated by mechanical stress: extended Bell theory. J. Chem. Phys. 135(16), 164103–164108 (2011)CrossRef
42.
Zurück zum Zitat Eyring, H.: Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4(4), 283–291 (1936)CrossRef Eyring, H.: Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4(4), 283–291 (1936)CrossRef
43.
Zurück zum Zitat Kauzmann, W., Eyring, H.: The viscous flow of large molecules. J. Am. Chem. Soc. 62(11), 3113–3125 (1940)CrossRef Kauzmann, W., Eyring, H.: The viscous flow of large molecules. J. Am. Chem. Soc. 62(11), 3113–3125 (1940)CrossRef
44.
Zurück zum Zitat Evans, M.G., Polanyi, M.: Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc. 31, 875–894 (1935)CrossRef Evans, M.G., Polanyi, M.: Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc. 31, 875–894 (1935)CrossRef
45.
Zurück zum Zitat Gibbs, G.B.: The thermodynamics of thermally-activated dislocation glide. Phys. Status Solidi B 10(2), 507–512 (1965)CrossRef Gibbs, G.B.: The thermodynamics of thermally-activated dislocation glide. Phys. Status Solidi B 10(2), 507–512 (1965)CrossRef
46.
Zurück zum Zitat Hirth, J.P., Nix, W.D.: An analysis of the thermodynamics of dislocation glide. Phys. Status Solidi B 35(1), 177–188 (1969)CrossRef Hirth, J.P., Nix, W.D.: An analysis of the thermodynamics of dislocation glide. Phys. Status Solidi B 35(1), 177–188 (1969)CrossRef
47.
Zurück zum Zitat Kocks, U.F., Argon, A.S., Ashby, M.F.: Thermodynamics and kinetics of slip. Prog. Mater Sci. 19, 280 (1975) Kocks, U.F., Argon, A.S., Ashby, M.F.: Thermodynamics and kinetics of slip. Prog. Mater Sci. 19, 280 (1975)
48.
Zurück zum Zitat Gibbs, G.B.: On the interpretation of experimental activation parameters for dislocation glide. Philos. Mag. 20(166), 867–872 (1969)CrossRef Gibbs, G.B.: On the interpretation of experimental activation parameters for dislocation glide. Philos. Mag. 20(166), 867–872 (1969)CrossRef
49.
Zurück zum Zitat Taylor, G.: Thermally-activated deformation of BCC metals and alloys. Prog. Mater Sci. 36, 29–61 (1992)CrossRef Taylor, G.: Thermally-activated deformation of BCC metals and alloys. Prog. Mater Sci. 36, 29–61 (1992)CrossRef
50.
Zurück zum Zitat Marcus, R.A.: On the theory of oxidation-reduction reactions involving electron transfer. J. Chem. Phys. 24(5), 966–978 (1956)CrossRef Marcus, R.A.: On the theory of oxidation-reduction reactions involving electron transfer. J. Chem. Phys. 24(5), 966–978 (1956)CrossRef
51.
Zurück zum Zitat Hammond, G.S.: A correlation of reaction rates. J. Am. Chem. Soc. 77(2), 334–338 (1955)CrossRef Hammond, G.S.: A correlation of reaction rates. J. Am. Chem. Soc. 77(2), 334–338 (1955)CrossRef
52.
Zurück zum Zitat Hyeon, C., Thirumalai, D.: Forced-unfolding and force-quench refolding of RNA hairpins. Biophys. J. 90(10), 3410–3427 (2006)CrossRef Hyeon, C., Thirumalai, D.: Forced-unfolding and force-quench refolding of RNA hairpins. Biophys. J. 90(10), 3410–3427 (2006)CrossRef
53.
Zurück zum Zitat Remoissenet, M., Peyrard, M.: A new simple model of a kink bearing Hamiltonian. J. Phys. C Solid State 14(18), L481 (1981)CrossRef Remoissenet, M., Peyrard, M.: A new simple model of a kink bearing Hamiltonian. J. Phys. C Solid State 14(18), L481 (1981)CrossRef
54.
Zurück zum Zitat Prandtl, L.: Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Z. Angew. Math. Mech. 8, 85 (1928)CrossRef Prandtl, L.: Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Z. Angew. Math. Mech. 8, 85 (1928)CrossRef
55.
Zurück zum Zitat Furlong, O.J., Manzi, S.J., Pereyra, V.D., Bustos, V., Tysoe, W.T.: Monte Carlo simulations for Tomlinson sliding models for non-sinusoidal periodic potentials. Tribol. Lett. 39(2), 177–180 (2010)CrossRef Furlong, O.J., Manzi, S.J., Pereyra, V.D., Bustos, V., Tysoe, W.T.: Monte Carlo simulations for Tomlinson sliding models for non-sinusoidal periodic potentials. Tribol. Lett. 39(2), 177–180 (2010)CrossRef
56.
Zurück zum Zitat Konda, S.S.M., Brantley, J.N., Varghese, B.T., Wiggins, K.M., Bielawski, C.W., Makarov, D.E.: Molecular catch bonds and the anti-Hammond effect in polymer mechanochemistry. J. Am. Chem. Soc. 135(34), 12722–12729 (2013)CrossRef Konda, S.S.M., Brantley, J.N., Varghese, B.T., Wiggins, K.M., Bielawski, C.W., Makarov, D.E.: Molecular catch bonds and the anti-Hammond effect in polymer mechanochemistry. J. Am. Chem. Soc. 135(34), 12722–12729 (2013)CrossRef
57.
Zurück zum Zitat Prezhdo, O.V., Pereverzev, Y.V.: Theoretical aspects of the biological catch bond. Acc. Chem. Res. 42(6), 693–703 (2009)CrossRef Prezhdo, O.V., Pereverzev, Y.V.: Theoretical aspects of the biological catch bond. Acc. Chem. Res. 42(6), 693–703 (2009)CrossRef
58.
Zurück zum Zitat Sokurenko, E.V., Vogel, V., Thomas, W.E.: Catch-bond mechanism of force-enhanced adhesion: counterintuitive, elusive, but … widespread? Cell Host Microbe 4(4), 314–323 (2008)CrossRef Sokurenko, E.V., Vogel, V., Thomas, W.E.: Catch-bond mechanism of force-enhanced adhesion: counterintuitive, elusive, but … widespread? Cell Host Microbe 4(4), 314–323 (2008)CrossRef
59.
Zurück zum Zitat Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E., Brune, H.: Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91(8), 084502 (2003)CrossRef Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E., Brune, H.: Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91(8), 084502 (2003)CrossRef
60.
Zurück zum Zitat Pastewka, L., Moser, S., Gumbsch, P., Moseler, M.: Anisotropic mechanical amorphization drives wear in diamond. Nat. Mater. 10(1), 34–38 (2011)CrossRef Pastewka, L., Moser, S., Gumbsch, P., Moseler, M.: Anisotropic mechanical amorphization drives wear in diamond. Nat. Mater. 10(1), 34–38 (2011)CrossRef
61.
Zurück zum Zitat Li, Q., Tullis, T.E., Goldsby, D., Carpick, R.W.: Frictional ageing from interfacial bonding and the origins of rate and state friction. Nature 480(7376), 233–236 (2011)CrossRef Li, Q., Tullis, T.E., Goldsby, D., Carpick, R.W.: Frictional ageing from interfacial bonding and the origins of rate and state friction. Nature 480(7376), 233–236 (2011)CrossRef
62.
Zurück zum Zitat Mikulski, P.T., Gao, G., Chateauneuf, G.M., Harrison, J.A.: Contact forces at the sliding interface: mixed versus pure model alkane monolayers. J. Chem. Phys. 122(2), 024701–024709 (2005)CrossRef Mikulski, P.T., Gao, G., Chateauneuf, G.M., Harrison, J.A.: Contact forces at the sliding interface: mixed versus pure model alkane monolayers. J. Chem. Phys. 122(2), 024701–024709 (2005)CrossRef
63.
Zurück zum Zitat Pozzo, M., Alfè, D., Lacovig, P., Hofmann, P., Lizzit, S., Baraldi, A.: Thermal expansion of supported and freestanding graphene: lattice constant versus interatomic distance. Phys. Rev. Lett. 106(13), 135501 (2011)CrossRef Pozzo, M., Alfè, D., Lacovig, P., Hofmann, P., Lizzit, S., Baraldi, A.: Thermal expansion of supported and freestanding graphene: lattice constant versus interatomic distance. Phys. Rev. Lett. 106(13), 135501 (2011)CrossRef
Metadaten
Titel
On Stress-Induced Tribochemical Reaction Rates
verfasst von
Wilfred Tysoe
Publikationsdatum
01.06.2017
Verlag
Springer US
Erschienen in
Tribology Letters / Ausgabe 2/2017
Print ISSN: 1023-8883
Elektronische ISSN: 1573-2711
DOI
https://doi.org/10.1007/s11249-017-0832-x

Weitere Artikel der Ausgabe 2/2017

Tribology Letters 2/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.