Skip to main content
Erschienen in: International Journal of Computer Vision 3/2016

01.05.2016

Complex Non-rigid 3D Shape Recovery Using a Procrustean Normal Distribution Mixture Model

verfasst von: Jungchan Cho, Minsik Lee, Songhwai Oh

Erschienen in: International Journal of Computer Vision | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recovering the 3D shape of a non-rigid object is a challenging problem. Existing methods make the low-rank assumption and do not scale well with the increased degree of freedom found in complex non-rigid deformations or shape variations. Moreover, in general, the degree of freedom of deformation is assumed to be known in advance, which limits the applicability of non-rigid structure from motion algorithms in a practical situation. In this paper, we propose a method for handling complex shape variations based on the assumption that complex shape variations can be represented probabilistically by a mixture of primitive shape variations. The proposed model is a generative probabilistic model, called a Procrustean normal distribution mixture model, which can model complex shape variations without rank constraints. Experimental results show that the proposed method significantly outperforms existing methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
2
\({\mathbf {Q}}^T {\mathbf {Q}}= {\mathbf {I}}\) but \({\mathbf {Q}}{\mathbf {Q}}^T \ne {\mathbf {I}}\).
 
3
In this paper, we use \({\mathbf {0}}\) to denote both matrices and vectors of zeros.
 
4
Let \({\mathbf {R}}_i^f\) be a rotation matrix obtained from the factorization method. Then \({\mathbf {R}}_i\) in (32) is a transpose of \({\mathbf {R}}^f\).
 
6
The maximum number of shape basis vectors is limited up to \(\lfloor \frac{28}{3}\rfloor \) when the number of landmarks is 28 (Gotardo and Martinez 2011).
 
11
Naming convention: \(p \langle n \rangle \_\langle a \rangle \_\langle k \rangle \), where n is the number of persons, a is the action type, and k is the take number.
 
12
The maximum number of shape basis vectors is limited up to \(\lfloor \frac{15}{3}\rfloor \) for 15 landmarks (Gotardo and Martinez 2011).
 
13
In this table, we denote six sequences as only action types.
 
16
The viewpoint of each video sequence is assigned to one of four coarse camera viewpoints, i.e., front, back, left, and right.
 
17
We select a more plausible result between the reconstructed 3D shape and its depth inverted version to remove the sign ambiguity. Also, we made two virtual 3D landmarks of a torso, i.e., upper body and lower body, for the purpose of visualization, since the Penn Action dataset does not give torso landmark positions.
 
Literatur
Zurück zum Zitat Akhter, I., Sheikh, Y., & Khan, S. (2009). In defense of orthonormality constraints for nonrigid structure from motion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, doi:10.1109/CVPR.2009.5206620. Akhter, I., Sheikh, Y., & Khan, S. (2009). In defense of orthonormality constraints for nonrigid structure from motion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, doi:10.​1109/​CVPR.​2009.​5206620.
Zurück zum Zitat Akhter, I., Sheikh, Y., Khan, S., & Kanade, T. (2011). Trajectory space: A dual representation for nonrigid structure from motion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(7), 1442–1456. doi:10.1109/TPAMI.2010.201.CrossRef Akhter, I., Sheikh, Y., Khan, S., & Kanade, T. (2011). Trajectory space: A dual representation for nonrigid structure from motion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(7), 1442–1456. doi:10.​1109/​TPAMI.​2010.​201.CrossRef
Zurück zum Zitat Bregler, C., Hertzmann, A., & Biermann, H. (2000). Recovering non-rigid 3D shape from image streams. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, doi:10.1109/CVPR.2000.854941. Bregler, C., Hertzmann, A., & Biermann, H. (2000). Recovering non-rigid 3D shape from image streams. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, doi:10.​1109/​CVPR.​2000.​854941.
Zurück zum Zitat Celeux, G., Chrétien, S., Forbes, F., & Mkhadri, A. (2001). A component-wise EM algorithm for mixtures. Journal of Computational and Graphical Statistics, 10(4), 697–712.MathSciNetCrossRef Celeux, G., Chrétien, S., Forbes, F., & Mkhadri, A. (2001). A component-wise EM algorithm for mixtures. Journal of Computational and Graphical Statistics, 10(4), 697–712.MathSciNetCrossRef
Zurück zum Zitat Dai, Y., Li, H., & He, M. (2012). A simple prior-free method for non-rigid structure-from-motion factorization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, doi:10.1109/CVPR.2012.6247905. Dai, Y., Li, H., & He, M. (2012). A simple prior-free method for non-rigid structure-from-motion factorization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, doi:10.​1109/​CVPR.​2012.​6247905.
Zurück zum Zitat Fayad, J., Agapito, L., & Del Bue, A. (2010). Piecewise quadratic reconstruction of non-rigid surfaces from monocular sequences. In Proceedings of the European Conference on Computer Vision, doi:10.1007/978-3-642-15561-1_22. Fayad, J., Agapito, L., & Del Bue, A. (2010). Piecewise quadratic reconstruction of non-rigid surfaces from monocular sequences. In Proceedings of the European Conference on Computer Vision, doi:10.​1007/​978-3-642-15561-1_​22.
Zurück zum Zitat Figueiredo, M. A. T., & Jain, A. K. (2002). Unsupervised learning of finite mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(3), 381–396. doi:10.1109/34.990138.CrossRef Figueiredo, M. A. T., & Jain, A. K. (2002). Unsupervised learning of finite mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(3), 381–396. doi:10.​1109/​34.​990138.CrossRef
Zurück zum Zitat Forsyth, D.A., & Ponce, J. (2002). Computer vision: A modern approach. Prentice Hall Professional Technical Reference. Forsyth, D.A., & Ponce, J. (2002). Computer vision: A modern approach. Prentice Hall Professional Technical Reference.
Zurück zum Zitat Gotardo, P. F., & Martinez, A. M. (2011). Non-rigid structure from motion with complementary rank-3 spaces. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, doi:10.1109/TPAMI.2007.70752. Gotardo, P. F., & Martinez, A. M. (2011). Non-rigid structure from motion with complementary rank-3 spaces. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, doi:10.​1109/​TPAMI.​2007.​70752.
Zurück zum Zitat Lee, M., Cho, J., Choi, C.-H., & Oh, S. (2013). Procrustean normal distribution for non-rigid structure from motion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, doi:10.1109/TPAMI.2007.70752. Lee, M., Cho, J., Choi, C.-H., & Oh, S. (2013). Procrustean normal distribution for non-rigid structure from motion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, doi:10.​1109/​TPAMI.​2007.​70752.
Zurück zum Zitat Lee, M., Choi, C.-H., & Oh, S. (2014). A Procrustean Markov process for non-rigid structure recovery. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, doi:10.1109/CVPR.2014.201. Lee, M., Choi, C.-H., & Oh, S. (2014). A Procrustean Markov process for non-rigid structure recovery. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, doi:10.​1109/​CVPR.​2014.​201.
Zurück zum Zitat Lin, Z., Chen, M., & Ma, Y. (2010). The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv preprint, arXiv:1009.5055. Lin, Z., Chen, M., & Ma, Y. (2010). The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv preprint, arXiv:​1009.​5055.
Zurück zum Zitat Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., & Ma, Y. (2013). Robust recovery of subspace structures by low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1), 171–184. doi:10.1109/TPAMI.2012.88. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., & Ma, Y. (2013). Robust recovery of subspace structures by low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1), 171–184. doi:10.​1109/​TPAMI.​2012.​88.
Zurück zum Zitat Paladini, M., Del Bue, A., Stosic, M., Dodig, M., Xavier, J., & Agapito, L. (2009). Factorization for non-rigid and articulated structure using metric projections. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, doi:10.1109/CVPR.2009.5206602. Paladini, M., Del Bue, A., Stosic, M., Dodig, M., Xavier, J., & Agapito, L. (2009). Factorization for non-rigid and articulated structure using metric projections. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, doi:10.​1109/​CVPR.​2009.​5206602.
Zurück zum Zitat Pizarro, D., & Bartoli, A. (2011). Global optimization for optimal generalized Procrustes analysis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, doi:10.1109/CVPR.2011.59955677. Pizarro, D., & Bartoli, A. (2011). Global optimization for optimal generalized Procrustes analysis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, doi:10.​1109/​CVPR.​2011.​59955677.
Zurück zum Zitat Salzmann, M., Urtasun, R., & Fua, P. (2008). Local deformation models for monocular 3D shape recovery. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, doi:10.1109/CVPR.2008.4587499. Salzmann, M., Urtasun, R., & Fua, P. (2008). Local deformation models for monocular 3D shape recovery. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, doi:10.​1109/​CVPR.​2008.​4587499.
Zurück zum Zitat Taylor, J., Jepson, A. D., & Kutulakos, K. N. (2010). Non-rigid structure from locally-rigid motion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, doi:10.1109/CVPR.2010.5540002. Taylor, J., Jepson, A. D., & Kutulakos, K. N. (2010). Non-rigid structure from locally-rigid motion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, doi:10.​1109/​CVPR.​2010.​5540002.
Zurück zum Zitat Tomasi, C., & Kanade, T. (1992). Shape and motion from image streams under orthography: A factorization method. International Journal of Computer Vision, 9(2), 137–154. doi:10.1007/BF00129684. Tomasi, C., & Kanade, T. (1992). Shape and motion from image streams under orthography: A factorization method. International Journal of Computer Vision, 9(2), 137–154. doi:10.​1007/​BF00129684.
Zurück zum Zitat Torresani, L., Hertzmann, A., & Bregler, C. (2008). Nonrigid structure-from-motion: Estimating shape and motion with hierarchical priors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(5), 878–892. doi:10.1109/TPAMI.2007.70752.CrossRef Torresani, L., Hertzmann, A., & Bregler, C. (2008). Nonrigid structure-from-motion: Estimating shape and motion with hierarchical priors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(5), 878–892. doi:10.​1109/​TPAMI.​2007.​70752.CrossRef
Zurück zum Zitat van der Aa, N., Luo, X., Giezeman, G., Tan, R., & Veltkamp, R. (2011). Utrecht multi-person motion (UMPM) benchmark: A multi-person dataset with synchronized video and motion capture data for evaluation of articulated human motion and interaction. In Proceedings of the Workshop on Human Interaction in Computer Vision, doi:10.1109/ICCVW.2011.6130396. van der Aa, N., Luo, X., Giezeman, G., Tan, R., & Veltkamp, R. (2011). Utrecht multi-person motion (UMPM) benchmark: A multi-person dataset with synchronized video and motion capture data for evaluation of articulated human motion and interaction. In Proceedings of the Workshop on Human Interaction in Computer Vision, doi:10.​1109/​ICCVW.​2011.​6130396.
Zurück zum Zitat Varol, A., Salzmann, M., Tola, E., & Fua, P. (2009). Template-free monocular reconstruction of deformable surfaces. In Proceedings of the IEEE International Conference on Computer Vision, doi:10.1109/ICCV.2009.5459403. Varol, A., Salzmann, M., Tola, E., & Fua, P. (2009). Template-free monocular reconstruction of deformable surfaces. In Proceedings of the IEEE International Conference on Computer Vision, doi:10.​1109/​ICCV.​2009.​5459403.
Zurück zum Zitat Xiao, J., Chai, J., & Kanade, T. (2006). A closed-form solution to non-rigid shape and motion recovery. International Journal of Computer Vision, 67(2), 233–246. doi:10.1007/978-3-540-24673-2_46. Xiao, J., Chai, J., & Kanade, T. (2006). A closed-form solution to non-rigid shape and motion recovery. International Journal of Computer Vision, 67(2), 233–246. doi:10.​1007/​978-3-540-24673-2_​46.
Zurück zum Zitat Zelditch, M. L., Swiderski, D. L., & Sheets, H. D. (2012). Geometric morphometrics for biologists: A primer. San Diego: Elsevier/Academic Press.MATH Zelditch, M. L., Swiderski, D. L., & Sheets, H. D. (2012). Geometric morphometrics for biologists: A primer. San Diego: Elsevier/Academic Press.MATH
Zurück zum Zitat Zhang, W., Zhu, M., & Derpanis, K. (2013). From actemes to action: A strongly-supervised representation for detailed action understanding. In Proceedings of the IEEE International Conference on Computer Vision, doi:10.1109/ICCV.2013.280. Zhang, W., Zhu, M., & Derpanis, K. (2013). From actemes to action: A strongly-supervised representation for detailed action understanding. In Proceedings of the IEEE International Conference on Computer Vision, doi:10.​1109/​ICCV.​2013.​280.
Zurück zum Zitat Zhu, Y., Cox, M., & Lucey, S. (2013). 3D motion reconstruction for real-world camera motion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, doi:10.1109/CVPR.2011.5995650. Zhu, Y., Cox, M., & Lucey, S. (2013). 3D motion reconstruction for real-world camera motion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, doi:10.​1109/​CVPR.​2011.​5995650.
Zurück zum Zitat Zhu, Y., Huang, D., Torre, F. D. L., & Lucey, S. (2014). Complex non-rigid motion 3D reconstruction by union of subspaces. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, doi:10.1109/CVPR.2014.200. Zhu, Y., Huang, D., Torre, F. D. L., & Lucey, S. (2014). Complex non-rigid motion 3D reconstruction by union of subspaces. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, doi:10.​1109/​CVPR.​2014.​200.
Metadaten
Titel
Complex Non-rigid 3D Shape Recovery Using a Procrustean Normal Distribution Mixture Model
verfasst von
Jungchan Cho
Minsik Lee
Songhwai Oh
Publikationsdatum
01.05.2016
Verlag
Springer US
Erschienen in
International Journal of Computer Vision / Ausgabe 3/2016
Print ISSN: 0920-5691
Elektronische ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-015-0860-7

Weitere Artikel der Ausgabe 3/2016

International Journal of Computer Vision 3/2016 Zur Ausgabe

Premium Partner