Skip to main content
Erschienen in: International Journal of Computer Vision 1/2023

02.10.2022

Low-light Image Enhancement via Breaking Down the Darkness

verfasst von: Xiaojie Guo, Qiming Hu

Erschienen in: International Journal of Computer Vision | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Images captured in low-light environments often suffer from complex degradation. Simply adjusting light would inevitably result in burst of hidden noise and color distortion. To seek results with satisfied lighting, cleanliness, and realism from degraded inputs, this paper presents a novel framework inspired by the divide-and-rule principle, greatly alleviating the degradation entanglement. Assuming that an image can be decomposed into texture (with possible noise) and color components, one can specifically execute noise removal and color correction along with light adjustment. For this purpose, we propose to convert an image from the RGB colorspace into a luminance-chrominance one. An adjustable noise suppression network is designed to eliminate noise in the brightened luminance, having the illumination map estimated to indicate noise amplification levels. The enhanced luminance further serves as guidance for the chrominance mapper to generate realistic colors. Extensive experiments are conducted to reveal the effectiveness of our design, and demonstrate its superiority over state-of-the-art alternatives both quantitatively and qualitatively on several benchmark datasets. Our code has been made publicly available at https://​github.​com/​mingcv/​Bread.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdullah-Al-Wadud, M., Kabir, M. H., Dewan, M. A. A., & Chae, O. (2007). A dynamic histogram equalization for image contrast enhancement. IEEE Transactions on Consumer Electronics, 53(2), 593–600.CrossRef Abdullah-Al-Wadud, M., Kabir, M. H., Dewan, M. A. A., & Chae, O. (2007). A dynamic histogram equalization for image contrast enhancement. IEEE Transactions on Consumer Electronics, 53(2), 593–600.CrossRef
Zurück zum Zitat Brooks, T., Mildenhall, B., Xue, T., Chen, J., Sharlet, D. & Barron, J. T. (2019) Unprocessing images for learned raw denoising. In CVPR, pages 11036–11045 Brooks, T., Mildenhall, B., Xue, T., Chen, J., Sharlet, D. & Barron, J. T. (2019) Unprocessing images for learned raw denoising. In CVPR, pages 11036–11045
Zurück zum Zitat Cai, J., Shuhang, G., & Zhang, L. (2018). Learning a deep single image contrast enhancer from multi-exposure images. IEEE TIP, 27(4), 2049–2062.MathSciNetMATH Cai, J., Shuhang, G., & Zhang, L. (2018). Learning a deep single image contrast enhancer from multi-exposure images. IEEE TIP, 27(4), 2049–2062.MathSciNetMATH
Zurück zum Zitat Celik, T., & Tjahjadi, T. (2011). Contextual and variational contrast enhancement. IEEE TIP, 20(12), 3431–3441.MathSciNetMATH Celik, T., & Tjahjadi, T. (2011). Contextual and variational contrast enhancement. IEEE TIP, 20(12), 3431–3441.MathSciNetMATH
Zurück zum Zitat Chen, C., Chen, Q., Xu, J., & Koltun, V.. (2018) Learning to see in the dark. In: CVPR, pages 3291–3300 Chen, C., Chen, Q., Xu, J., & Koltun, V.. (2018) Learning to see in the dark. In: CVPR, pages 3291–3300
Zurück zum Zitat Cheng, H.-D., & Shi, X. J. (2004). A simple and effective histogram equalization approach to image enhancement. Digital signal processing, 14(2), 158–170.CrossRef Cheng, H.-D., & Shi, X. J. (2004). A simple and effective histogram equalization approach to image enhancement. Digital signal processing, 14(2), 158–170.CrossRef
Zurück zum Zitat Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. O. (2007). Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE TIP, 16(8), 2080–2095.MathSciNet Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. O. (2007). Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE TIP, 16(8), 2080–2095.MathSciNet
Zurück zum Zitat Fan, M., Wang, W., Yang, W., & Liu, J. (2020) Integrating semantic segmentation and retinex model for low-light image enhancement. In ACM MM, pages 2317–2325 Fan, M., Wang, W., Yang, W., & Liu, J. (2020) Integrating semantic segmentation and retinex model for low-light image enhancement. In ACM MM, pages 2317–2325
Zurück zum Zitat Fang, Y., Zhu, H., Ma, K., Wang, Z., & Li, S. (2020). Perceptual evaluation for multi-exposure image fusion of dynamic scenes. IEEE TIP, 29, 1127–1138.MathSciNetMATH Fang, Y., Zhu, H., Ma, K., Wang, Z., & Li, S. (2020). Perceptual evaluation for multi-exposure image fusion of dynamic scenes. IEEE TIP, 29, 1127–1138.MathSciNetMATH
Zurück zum Zitat Fu, X., Zeng, D., Huang, Y., Zhang, X.-P. & Ding, X. (2016) A weighted variational model for simultaneous reflectance and illumination estimation. In CVPR, pages 2782–2790 Fu, X., Zeng, D., Huang, Y., Zhang, X.-P. & Ding, X. (2016) A weighted variational model for simultaneous reflectance and illumination estimation. In CVPR, pages 2782–2790
Zurück zum Zitat Guo, C., Li, C., Guo, J., Loy, C. C., Hou, J., Kwong, S., & Cong, R. (2020) Zero-reference deep curve estimation for low-light image enhancement. In CVPR, pages 1780–1789 Guo, C., Li, C., Guo, J., Loy, C. C., Hou, J., Kwong, S., & Cong, R. (2020) Zero-reference deep curve estimation for low-light image enhancement. In CVPR, pages 1780–1789
Zurück zum Zitat Guo, X., Li, Y., & Ling, H. (2016). Lime: Low-light image enhancement via illumination map estimation. IEEE TIP, 26(2), 982–993. Guo, X., Li, Y., & Ling, H. (2016). Lime: Low-light image enhancement via illumination map estimation. IEEE TIP, 26(2), 982–993.
Zurück zum Zitat Ignatov, A., Van Gool, L., & Timofte, R.. (2020) Replacing mobile camera isp with a single deep learning model. In CVPR, pages 536–537. Ignatov, A., Van Gool, L., & Timofte, R.. (2020) Replacing mobile camera isp with a single deep learning model. In CVPR, pages 536–537.
Zurück zum Zitat Jiang, Y., Gong, X., Ding Liu, Yu., Cheng, C. F., Shen, X., Yang, J., et al. (2021). Enlightengan: Deep light enhancement without paired supervision. IEEE TIP, 30(2), 2340–2349. Jiang, Y., Gong, X., Ding Liu, Yu., Cheng, C. F., Shen, X., Yang, J., et al. (2021). Enlightengan: Deep light enhancement without paired supervision. IEEE TIP, 30(2), 2340–2349.
Zurück zum Zitat Jobson, D. J., Rahman, Z., & Woodell, G. A. (1997). A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE TIP, 6(7), 965–976. Jobson, D. J., Rahman, Z., & Woodell, G. A. (1997). A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE TIP, 6(7), 965–976.
Zurück zum Zitat Jobson, D. J., Rahman, Z., & Woodell, G. A. (1997). Properties and performance of a center/surround retinex. IEEE TIP, 6(3), 451–462. Jobson, D. J., Rahman, Z., & Woodell, G. A. (1997). Properties and performance of a center/surround retinex. IEEE TIP, 6(3), 451–462.
Zurück zum Zitat Kun, L., & Zhang, L. (2020). Tbefn: A two-branch exposure-fusion network for low-light image enhancement. IEEE TMM, 23(2), 4093–4105.MathSciNet Kun, L., & Zhang, L. (2020). Tbefn: A two-branch exposure-fusion network for low-light image enhancement. IEEE TMM, 23(2), 4093–4105.MathSciNet
Zurück zum Zitat Lee, C., Lee, C., & Kim, C.-S. (2013). Contrast enhancement based on layered difference representation of 2d histograms. IEEE TIP, 22(12), 5372–5384. Lee, C., Lee, C., & Kim, C.-S. (2013). Contrast enhancement based on layered difference representation of 2d histograms. IEEE TIP, 22(12), 5372–5384.
Zurück zum Zitat Li, C., Guo, J., Porikli, F., & Pang, Y. (2018). Lightennet: A convolutional neural network for weakly illuminated image enhancement. Pattern recognition letters, 104(2), 15–22. Li, C., Guo, J., Porikli, F., & Pang, Y. (2018). Lightennet: A convolutional neural network for weakly illuminated image enhancement. Pattern recognition letters, 104(2), 15–22.
Zurück zum Zitat Li, J., Li, J., Fang, F., Li, F., & Zhang, G. (2020). Luminance-aware pyramid network for low-light image enhancement. IEEE TMM, 23(2), 3153–3165. Li, J., Li, J., Fang, F., Li, F., & Zhang, G. (2020). Luminance-aware pyramid network for low-light image enhancement. IEEE TMM, 23(2), 3153–3165.
Zurück zum Zitat Li, M., Liu, J., Yang, W., Sun, X., & Guo, Z. (2018). Structure-revealing low-light image enhancement via robust retinex model. IEEE TIP, 27(6), 2828–2841.MathSciNetMATH Li, M., Liu, J., Yang, W., Sun, X., & Guo, Z. (2018). Structure-revealing low-light image enhancement via robust retinex model. IEEE TIP, 27(6), 2828–2841.MathSciNetMATH
Zurück zum Zitat Lim, S., & Kim, W. (2020). Dslr: Deep stacked laplacian restorer for low-light image enhancement. IEEE TMM, 23(2), 4272–4284. Lim, S., & Kim, W. (2020). Dslr: Deep stacked laplacian restorer for low-light image enhancement. IEEE TMM, 23(2), 4272–4284.
Zurück zum Zitat Lin, S., Ryabtsev, A., Sengupta, S., Curless, B. L., Seitz, S. M. & Kemelmacher-Shlizerman, I. (2021) Real-time high-resolution background matting. In CVPR, pages 8762–8771 Lin, S., Ryabtsev, A., Sengupta, S., Curless, B. L., Seitz, S. M. & Kemelmacher-Shlizerman, I. (2021) Real-time high-resolution background matting. In CVPR, pages 8762–8771
Zurück zum Zitat Liu, Z., Li, X., Luo, P., Loy, C. C., & Tang, X. (2017). Deep learning markov random field for semantic segmentation. IEEE TPAMI, 40(8), 1814–1828.CrossRef Liu, Z., Li, X., Luo, P., Loy, C. C., & Tang, X. (2017). Deep learning markov random field for semantic segmentation. IEEE TPAMI, 40(8), 1814–1828.CrossRef
Zurück zum Zitat Lore, K. G., Akintayo, A., & Sarkar, S. (2017). Llnet: A deep autoencoder approach to natural low-light image enhancement. PR, 61(2):650–662 Lore, K. G., Akintayo, A., & Sarkar, S. (2017). Llnet: A deep autoencoder approach to natural low-light image enhancement. PR, 61(2):650–662
Zurück zum Zitat Mittal, A., Soundararajan, R., & Bovik, A. C. (2013). Making a completely blind image quality analyzer. IEEE Signal Processing Letters, 20(2), 209–212.CrossRef Mittal, A., Soundararajan, R., & Bovik, A. C. (2013). Making a completely blind image quality analyzer. IEEE Signal Processing Letters, 20(2), 209–212.CrossRef
Zurück zum Zitat Pisano, E. D., Zong, S., Hemminger, B. M., Marla DeLuca, R., Johnston, E., Keith Muller, M., et al. (1998). Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms. Journal of Digital imaging, 11(4), 193.CrossRef Pisano, E. D., Zong, S., Hemminger, B. M., Marla DeLuca, R., Johnston, E., Keith Muller, M., et al. (1998). Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms. Journal of Digital imaging, 11(4), 193.CrossRef
Zurück zum Zitat Ren, W., Liu, S., Ma, L., Qianqian, X., Xiangyu, X., Cao, X., et al. (2019). Low-light image enhancement via a deep hybrid network. IEEE TIP, 28(9), 4364–4375.MathSciNetMATH Ren, W., Liu, S., Ma, L., Qianqian, X., Xiangyu, X., Cao, X., et al. (2019). Low-light image enhancement via a deep hybrid network. IEEE TIP, 28(9), 4364–4375.MathSciNetMATH
Zurück zum Zitat Schwartz, E., Giryes, R., & Bronstein, A. M. (2018). Deepisp: Toward learning an end-to-end image processing pipeline. IEEE TIP, 28(2), 912–923.MathSciNetMATH Schwartz, E., Giryes, R., & Bronstein, A. M. (2018). Deepisp: Toward learning an end-to-end image processing pipeline. IEEE TIP, 28(2), 912–923.MathSciNetMATH
Zurück zum Zitat Sharma, G., Wencheng, W., & Dalal, E. N. (2005). The ciede2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Research and Application, 30(2), 21–30.CrossRef Sharma, G., Wencheng, W., & Dalal, E. N. (2005). The ciede2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Research and Application, 30(2), 21–30.CrossRef
Zurück zum Zitat Shen, L., Yue, Z., Feng, F., Chen, Q., Liu, S., & Ma, J. (2017) Msr-net: Low-light image enhancement using deep convolutional network. arXiv preprint arXiv:1711.02488 Shen, L., Yue, Z., Feng, F., Chen, Q., Liu, S., & Ma, J. (2017) Msr-net: Low-light image enhancement using deep convolutional network. arXiv preprint arXiv:​1711.​02488
Zurück zum Zitat Tan, M., Pang, R., & Le, Q. V. (2020) Efficientdet: Scalable and efficient object detection. In CVPR, pages 10781–10790 Tan, M., Pang, R., & Le, Q. V. (2020) Efficientdet: Scalable and efficient object detection. In CVPR, pages 10781–10790
Zurück zum Zitat Wang, Y., Cao, Y., Zha, Z.-J., Zhang, J., Xiong, Z., Zhang, W., & Wu, F. (2019) Progressive retinex: Mutually reinforced illumination-noise perception network for low-light image enhancement. In ACM MM, pages 2015–2023 Wang, Y., Cao, Y., Zha, Z.-J., Zhang, J., Xiong, Z., Zhang, W., & Wu, F. (2019) Progressive retinex: Mutually reinforced illumination-noise perception network for low-light image enhancement. In ACM MM, pages 2015–2023
Zurück zum Zitat Wang, W., Wei, C., Yang, W., & Liu, Jiaying. (2018) Gladnet: Low-light enhancement network with global awareness. In IEEE International Conference on Automatic Face & Gesture Recognition, pages 751–755 Wang, W., Wei, C., Yang, W., & Liu, Jiaying. (2018) Gladnet: Low-light enhancement network with global awareness. In IEEE International Conference on Automatic Face & Gesture Recognition, pages 751–755
Zurück zum Zitat Wang, R., Zhang, Q., Fu, C.-W., Shen, X., Zheng, W.-S. & Jia J. (2019) Underexposed photo enhancement using deep illumination estimation. In CVPR, pages 6849–6857 Wang, R., Zhang, Q., Fu, C.-W., Shen, X., Zheng, W.-S. & Jia J. (2019) Underexposed photo enhancement using deep illumination estimation. In CVPR, pages 6849–6857
Zurück zum Zitat Wang, L.-W., Liu, Z.-S., Siu, W.-C., & Lun, D. P. K. (2020). Lightening network for low-light image enhancement. IEEE TIP, 29(2), 7984–7996.MATH Wang, L.-W., Liu, Z.-S., Siu, W.-C., & Lun, D. P. K. (2020). Lightening network for low-light image enhancement. IEEE TIP, 29(2), 7984–7996.MATH
Zurück zum Zitat Wang, S., Zheng, J., Hai-Miao, H., & Li, B. (2013). Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE TIP, 22(9), 3538–3548. Wang, S., Zheng, J., Hai-Miao, H., & Li, B. (2013). Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE TIP, 22(9), 3538–3548.
Zurück zum Zitat Wei, C., Wang, W., Yang, W. & Liu, J. (2018) Deep retinex decomposition for low-light enhancement. In BMVC, page 155 Wei, C., Wang, W., Yang, W. & Liu, J. (2018) Deep retinex decomposition for low-light enhancement. In BMVC, page 155
Zurück zum Zitat Xu, Ke, Yang, Xin, Yin, Baocai, & Lau, Rynson WH. (2020) Learning to restore low-light images via decomposition-and-enhancement. In CVPR, pages 2281–2290 Xu, Ke, Yang, Xin, Yin, Baocai, & Lau, Rynson WH. (2020) Learning to restore low-light images via decomposition-and-enhancement. In CVPR, pages 2281–2290
Zurück zum Zitat Yang, J., Jiang, X., Pan, C., & Liu, C. L. (2016) Enhancement of low light level images with coupled dictionary learning. In ICPR, pages 751–756 Yang, J., Jiang, X., Pan, C., & Liu, C. L. (2016) Enhancement of low light level images with coupled dictionary learning. In ICPR, pages 751–756
Zurück zum Zitat Yang, W., Wang, S., Fang, Y., Wang, Y., & Liu, J. (2020) From fidelity to perceptual quality: A semi-supervised approach for low-light image enhancement. In CVPR, pages 3063–3072 Yang, W., Wang, S., Fang, Y., Wang, Y., & Liu, J. (2020) From fidelity to perceptual quality: A semi-supervised approach for low-light image enhancement. In CVPR, pages 3063–3072
Zurück zum Zitat Yang, W., Wang, W., Huang, H., Wang, S., & Liu, J. (2021). Sparse gradient regularized deep retinex network for robust low-light image enhancement. IEEE TIP, 30(2), 2072–2086. Yang, W., Wang, W., Huang, H., Wang, S., & Liu, J. (2021). Sparse gradient regularized deep retinex network for robust low-light image enhancement. IEEE TIP, 30(2), 2072–2086.
Zurück zum Zitat Zhang, Y., Zhang, J. & Guo, X. (2019).Kindling the darkness: A practical low-light image enhancer. In ACM MM, pages 1632–1640 Zhang, Y., Zhang, J. & Guo, X. (2019).Kindling the darkness: A practical low-light image enhancer. In ACM MM, pages 1632–1640
Zurück zum Zitat Zhang, L., Zhang, L., Liu, X., Shen, Y., Zhang, S., & Zhao, S. (2019). Zero-shot restoration of back-lit images using deep internal learning. In ACM MM, pages 1623–1631 Zhang, L., Zhang, L., Liu, X., Shen, Y., Zhang, S., & Zhao, S. (2019). Zero-shot restoration of back-lit images using deep internal learning. In ACM MM, pages 1623–1631
Zurück zum Zitat Zhang, Y., Guo, X., Ma, J., Liu, W., & Zhang, J. (2021). Beyond brightening low-light images. IJCV, 129(4), 1013–1037. Zhang, Y., Guo, X., Ma, J., Liu, W., & Zhang, J. (2021). Beyond brightening low-light images. IJCV, 129(4), 1013–1037.
Zurück zum Zitat Zhang, K., Zuo, W., Chen, Y., Meng, D., & Zhang, L. (2017). Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE TIP, 26(7), 3142–3155.MathSciNetMATH Zhang, K., Zuo, W., Chen, Y., Meng, D., & Zhang, L. (2017). Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE TIP, 26(7), 3142–3155.MathSciNetMATH
Zurück zum Zitat Zhu, M., Pan, P., Chen, W. & Yang, Y. (2020). Eemefn: Low-light image enhancement via edge-enhanced multi-exposure fusion network. In AAAI, pages 13106–13113 Zhu, M., Pan, P., Chen, W. & Yang, Y. (2020). Eemefn: Low-light image enhancement via edge-enhanced multi-exposure fusion network. In AAAI, pages 13106–13113
Metadaten
Titel
Low-light Image Enhancement via Breaking Down the Darkness
verfasst von
Xiaojie Guo
Qiming Hu
Publikationsdatum
02.10.2022
Verlag
Springer US
Erschienen in
International Journal of Computer Vision / Ausgabe 1/2023
Print ISSN: 0920-5691
Elektronische ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-022-01667-9

Weitere Artikel der Ausgabe 1/2023

International Journal of Computer Vision 1/2023 Zur Ausgabe

Premium Partner