Skip to main content
Erschienen in: Wireless Networks 6/2017

08.04.2016

Potential position node placement approach via oppositional gravitational search for fulfill coverage and connectivity in target based wireless sensor networks

verfasst von: C. Jehan, D. Shalini Punithavathani

Erschienen in: Wireless Networks | Ausgabe 6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless Sensor Network (WSN) has appeared as a powerful technological platform with tremendous and novel applications. Now-a-days, monitoring and target tracking are the most major application in WSNs. In target based WSN, coverage and connectivity are the two most important issues for definite data forwarding from every target to a remote base station. An NP entire issue is to find least number of potential or possible locations to set sensor nodes gratifying both coverage and connectivity from a given a group of target points. In this article, we propose an Oppositional Gravitational Search algorithm (OGSA) based approach to solve this problem. This approach helps that the sensor nodes are prone to failure, the proposed system provides l-coverage to all targets and n-connectivity to each sensor node. This OGSA based system is presented with agent representation, derivation of efficient fitness function along with the usual Gravitational Search algorithm operators. The approach is simulated broadly with various scenarios of Wireless Sensor Network. The experimentation results are compared with some relevant existing algorithms to demonstrate the efficiency of the proposed approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tizhoosh, H. R. (2005). Opposition-based learning: A new scheme for machine intelligence. In: Proceedings of international conference comput intel modeling control and autom, Vol. 1, pp. 695–701. Tizhoosh, H. R. (2005). Opposition-based learning: A new scheme for machine intelligence. In: Proceedings of international conference comput intel modeling control and autom, Vol. 1, pp. 695–701.
2.
Zurück zum Zitat Rashedi, E., Nezamabadi-Pour, H., & Saeid, S. (2009). GSA: A gravitational search algorithm. Information Sciences, 179, 2232–2248.CrossRefMATH Rashedi, E., Nezamabadi-Pour, H., & Saeid, S. (2009). GSA: A gravitational search algorithm. Information Sciences, 179, 2232–2248.CrossRefMATH
3.
Zurück zum Zitat Shi, K., Chen, H., & Lin, Y. (2014). Probabilistic coverage based sensor scheduling for target tracking sensor networks. Information Sciences, 292, 95–110.CrossRef Shi, K., Chen, H., & Lin, Y. (2014). Probabilistic coverage based sensor scheduling for target tracking sensor networks. Information Sciences, 292, 95–110.CrossRef
4.
Zurück zum Zitat Victorie, T. A. A., & Jeyakumar, A. E. (2004). Hybrid PSO-SQP for economic dispatch with valve-point effect. Electric Power Systems Research, 71, 51–59.CrossRef Victorie, T. A. A., & Jeyakumar, A. E. (2004). Hybrid PSO-SQP for economic dispatch with valve-point effect. Electric Power Systems Research, 71, 51–59.CrossRef
5.
Zurück zum Zitat Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.CrossRef Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.CrossRef
6.
Zurück zum Zitat Azharuddin, M., Kuila, P., & Jana, P. K. (2015). Energy efficient fault tolerant clustering and routing algorithms for wireless sensor networks. Computers & Electrical Engineering, 41, 177–190.CrossRef Azharuddin, M., Kuila, P., & Jana, P. K. (2015). Energy efficient fault tolerant clustering and routing algorithms for wireless sensor networks. Computers & Electrical Engineering, 41, 177–190.CrossRef
7.
Zurück zum Zitat Rebai, M., Leberre, M., Snoussi, H., Hnaien, F., & Khoukhi, L. (2015). Sensor deployment optimization methods to achieve both coverage and connectivity in wireless sensor networks. Computers & Operations Research, 59, 11–21.MathSciNetCrossRefMATH Rebai, M., Leberre, M., Snoussi, H., Hnaien, F., & Khoukhi, L. (2015). Sensor deployment optimization methods to achieve both coverage and connectivity in wireless sensor networks. Computers & Operations Research, 59, 11–21.MathSciNetCrossRefMATH
8.
Zurück zum Zitat Ke, W.-C., Liu, B.-H., & Tsai, M.-J. (2007). Constructing a wireless sensor network to fully cover critical grids by deploying minimum sensors on grid points is NP-complete. IEEE Transactions on Computers, 56(5), 710–715.MathSciNetCrossRef Ke, W.-C., Liu, B.-H., & Tsai, M.-J. (2007). Constructing a wireless sensor network to fully cover critical grids by deploying minimum sensors on grid points is NP-complete. IEEE Transactions on Computers, 56(5), 710–715.MathSciNetCrossRef
9.
Zurück zum Zitat Liu, L., Hu, B., & Li, L. (2010). Energy conservation algorithms for maintaining coverage and connectivity in wireless sensor networks. IET Communications, 4(7), 786–800.MathSciNetCrossRef Liu, L., Hu, B., & Li, L. (2010). Energy conservation algorithms for maintaining coverage and connectivity in wireless sensor networks. IET Communications, 4(7), 786–800.MathSciNetCrossRef
10.
Zurück zum Zitat Gupta, S. K., Kuila, P., Jana, P. K. (2013) GAR: An energy efficient GA-based routing for wireless sensor networks. In: International conference on distributed computing and internet technology 2013. In: LNCS, 7753. New York: Springer, pp. 267–77. Gupta, S. K., Kuila, P., Jana, P. K. (2013) GAR: An energy efficient GA-based routing for wireless sensor networks. In: International conference on distributed computing and internet technology 2013. In: LNCS, 7753. New York: Springer, pp. 267–77.
11.
Zurück zum Zitat Sengupta, S., Das, S., Nasir, M., & Panigrahi, B. K. (2013). Multi-objective node deployment in WSNS: In search of an optimal trade-off among coverage, lifetime, energy consumption, and connectivity. Engineering Applications of Artificial Intelligence, 26(1), 405–416.CrossRef Sengupta, S., Das, S., Nasir, M., & Panigrahi, B. K. (2013). Multi-objective node deployment in WSNS: In search of an optimal trade-off among coverage, lifetime, energy consumption, and connectivity. Engineering Applications of Artificial Intelligence, 26(1), 405–416.CrossRef
12.
Zurück zum Zitat Kuila, P., Gupta, S. K., & Jana, P. K. (2013). A novel evolutionary approach for load balanced clustering problem for wireless sensor networks. Swarm and Evolutionary Computation, 12, 48–56.CrossRef Kuila, P., Gupta, S. K., & Jana, P. K. (2013). A novel evolutionary approach for load balanced clustering problem for wireless sensor networks. Swarm and Evolutionary Computation, 12, 48–56.CrossRef
13.
Zurück zum Zitat Kuila, P., & Jana, P. K. (2014). Energy efficient clustering and routing algorithms for wireless sensor networks: Particle swarm optimization approach. Engineering Applications of Artificial Intelligence, 33, 127–140.CrossRef Kuila, P., & Jana, P. K. (2014). Energy efficient clustering and routing algorithms for wireless sensor networks: Particle swarm optimization approach. Engineering Applications of Artificial Intelligence, 33, 127–140.CrossRef
14.
Zurück zum Zitat Kuila, P., & Jana, P. K. (2014). A novel differential evolution based clustering algorithm for wireless sensor networks. Applied Soft Computing, 25, 414–425.CrossRef Kuila, P., & Jana, P. K. (2014). A novel differential evolution based clustering algorithm for wireless sensor networks. Applied Soft Computing, 25, 414–425.CrossRef
15.
Zurück zum Zitat Younis, M., & Akkaya, K. (2008). Strategies and techniques for node placement in wireless sensor networks: A survey. Ad Hoc Networks, 6(4), 621–655.CrossRef Younis, M., & Akkaya, K. (2008). Strategies and techniques for node placement in wireless sensor networks: A survey. Ad Hoc Networks, 6(4), 621–655.CrossRef
16.
Zurück zum Zitat Lanza-Gutierrez, J. M., & Gomez-Pulido, J. A. (2015). Assuming multiobjective metaheuristics to solve a three-objective optimisation problem for relay node deployment in wireless sensor networks. Applied Soft Computing, 30, 675–687.CrossRef Lanza-Gutierrez, J. M., & Gomez-Pulido, J. A. (2015). Assuming multiobjective metaheuristics to solve a three-objective optimisation problem for relay node deployment in wireless sensor networks. Applied Soft Computing, 30, 675–687.CrossRef
17.
Zurück zum Zitat Cardei, M., & Du, D.-Z. (2005). Improving wireless sensor network lifetime through power aware organization. Wireless Networks, 11(3), 333–340.CrossRef Cardei, M., & Du, D.-Z. (2005). Improving wireless sensor network lifetime through power aware organization. Wireless Networks, 11(3), 333–340.CrossRef
18.
Zurück zum Zitat Konstantinidis, A., & Yang, K. (2011). Multi-objective k-connected deployment and power assignment in WSNS using a problem-specific constrained evolutionary algorithm based on decomposition. Computer Communications, 34(1), 83–98.CrossRef Konstantinidis, A., & Yang, K. (2011). Multi-objective k-connected deployment and power assignment in WSNS using a problem-specific constrained evolutionary algorithm based on decomposition. Computer Communications, 34(1), 83–98.CrossRef
19.
Zurück zum Zitat Berre, M. L., Hnaien, F., Snoussi, H. (2011). Multi-objective optimization in wireless sensors networks. In: 2011 International conference on microelectronics (ICM). IEEE; 2011. pp 1–4. Berre, M. L., Hnaien, F., Snoussi, H. (2011). Multi-objective optimization in wireless sensors networks. In: 2011 International conference on microelectronics (ICM). IEEE; 2011. pp 1–4.
20.
Zurück zum Zitat Yoon, Y., & Kim, Y.-H. (2013). An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks. IEEE Transactions on Cybernetics, 43(5), 1473–1483.CrossRef Yoon, Y., & Kim, Y.-H. (2013). An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks. IEEE Transactions on Cybernetics, 43(5), 1473–1483.CrossRef
21.
Zurück zum Zitat Mini, S., Udgata, S. K., & Sabat, S. L. (2012). M-connected coverage problem in wireless sensor networks. ISRN Sensor Network, 2012, 1–9.CrossRef Mini, S., Udgata, S. K., & Sabat, S. L. (2012). M-connected coverage problem in wireless sensor networks. ISRN Sensor Network, 2012, 1–9.CrossRef
22.
Zurück zum Zitat Misra, S., Majd, N. E., Huang, H. (2011). Constrained relay node placement in energy harvesting wireless sensor networks. In: 2011 IEEE 8th international conference on mobile adhoc and sensor systems (MASS). pp. 25–34. Misra, S., Majd, N. E., Huang, H. (2011). Constrained relay node placement in energy harvesting wireless sensor networks. In: 2011 IEEE 8th international conference on mobile adhoc and sensor systems (MASS). pp. 25–34.
23.
Zurück zum Zitat Bari, A., Jaekel, A., Jiang, J., & Xu, Y. (2012). Design of fault tolerant wireless sensor networks satisfying survivability and lifetime requirements. Computer Communications, 35(3), 320–333.CrossRef Bari, A., Jaekel, A., Jiang, J., & Xu, Y. (2012). Design of fault tolerant wireless sensor networks satisfying survivability and lifetime requirements. Computer Communications, 35(3), 320–333.CrossRef
24.
Zurück zum Zitat Gupta, S. K., Kuila, P., & Jana, P. K. (2015). Genetic algorithm for k-connected relay node placement in wireless sensor networks. In: Proceedings of the second international conference on computer and communication technologies. Springer, pp. 721–729. Gupta, S. K., Kuila, P., & Jana, P. K. (2015). Genetic algorithm for k-connected relay node placement in wireless sensor networks. In: Proceedings of the second international conference on computer and communication technologies. Springer, pp. 721–729.
25.
Zurück zum Zitat Kalaycı, T. E., Yıldırım, K. S., & Ugur, A. (2007). Maximizing coverage in a connected and k-covered wireless sensor network using genetic algorithms. International Journal of Applied Mathematics and Informatics, 1(3), 123–130. Kalaycı, T. E., Yıldırım, K. S., & Ugur, A. (2007). Maximizing coverage in a connected and k-covered wireless sensor network using genetic algorithms. International Journal of Applied Mathematics and Informatics, 1(3), 123–130.
26.
Zurück zum Zitat Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRef Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRef
27.
Zurück zum Zitat Yigitel, M. A., Incel, O. D., & Ersoy, C. (2011). QoS-aware MAC protocols for wireless sensor networks: A survey. Computer Networks, 55(8), 1982–2004.CrossRef Yigitel, M. A., Incel, O. D., & Ersoy, C. (2011). QoS-aware MAC protocols for wireless sensor networks: A survey. Computer Networks, 55(8), 1982–2004.CrossRef
28.
Zurück zum Zitat Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety, 91(9), 992–1007.CrossRef Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety, 91(9), 992–1007.CrossRef
29.
Zurück zum Zitat Gupta, S. K., Kuila, P., & Jana, P. K. (2015). Genetic algorithm approach for k-coverage and m-connected node placement in target based wireless sensor networks. Computers and Electrical Engineering, 1–13. doi:10.1016/j.compeleceng.2015.11.009. Gupta, S. K., Kuila, P., & Jana, P. K. (2015). Genetic algorithm approach for k-coverage and m-connected node placement in target based wireless sensor networks. Computers and Electrical Engineering, 1–13. doi:10.​1016/​j.​compeleceng.​2015.​11.​009.
30.
Zurück zum Zitat Li, M., et al. (2013). A survey on topology control in wireless sensor networks: Taxonomy, comparative study, and open issues. Proceedings of the IEEE, 101(12), 2538–2557.CrossRef Li, M., et al. (2013). A survey on topology control in wireless sensor networks: Taxonomy, comparative study, and open issues. Proceedings of the IEEE, 101(12), 2538–2557.CrossRef
31.
Zurück zum Zitat Chilamkurti, N., Zeadally, S., Vasilakos, A., Sharma, V. (2009). Cross-layer support for energy efficient routing in wireless sensor networks. Journal of Sensors, 2009, 9. doi:10.1155/2009/134165.CrossRef Chilamkurti, N., Zeadally, S., Vasilakos, A., Sharma, V. (2009). Cross-layer support for energy efficient routing in wireless sensor networks. Journal of Sensors, 2009, 9. doi:10.​1155/​2009/​134165.CrossRef
32.
Zurück zum Zitat Yao, Y., et al. (2013). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. MASS 2013, pp. 182–190. Yao, Y., et al. (2013). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. MASS 2013, pp. 182–190.
34.
Zurück zum Zitat Sheng, Z., et al. (2013). A survey on the IETF protocol suite for the internet of things: Standards, challenges, and opportunities. Wireless Communications, IEEE, 20(6), 91–98.CrossRef Sheng, Z., et al. (2013). A survey on the IETF protocol suite for the internet of things: Standards, challenges, and opportunities. Wireless Communications, IEEE, 20(6), 91–98.CrossRef
35.
Zurück zum Zitat Xiao, Y., et al. (2012). Tight performance bounds of multi-hop fair access for MAC protocols in wireless sensor networks and underwater sensor networks. IEEE Transactions on Mobile Computing, 11(10), 1538–1554.CrossRef Xiao, Y., et al. (2012). Tight performance bounds of multi-hop fair access for MAC protocols in wireless sensor networks and underwater sensor networks. IEEE Transactions on Mobile Computing, 11(10), 1538–1554.CrossRef
36.
Zurück zum Zitat Zeng, Y., et al. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.CrossRef Zeng, Y., et al. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.CrossRef
37.
Zurück zum Zitat Xiang, L., et al. (2011). Compressed data aggregation for energy efficient wireless sensor networks. SECON, 2011, pp. 46–54. Xiang, L., et al. (2011). Compressed data aggregation for energy efficient wireless sensor networks. SECON, 2011, pp. 46–54.
38.
Zurück zum Zitat Sengupta, S., et al. (2012). An evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 42(6), 1093–1102.CrossRef Sengupta, S., et al. (2012). An evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 42(6), 1093–1102.CrossRef
39.
Zurück zum Zitat Wei, G., et al. (2011). Prediction-based data aggregation in wireless sensor networks: Combining grey model and Kalman Filter. Computer Communications, 34(6), 793–802.MathSciNetCrossRef Wei, G., et al. (2011). Prediction-based data aggregation in wireless sensor networks: Combining grey model and Kalman Filter. Computer Communications, 34(6), 793–802.MathSciNetCrossRef
40.
Zurück zum Zitat Song, Y., et al. (2014). A biology-based algorithm to minimal exposure problem of wireless sensor networks. IEEE Transactions on Network and Service Management, 11(3), 417–430.MathSciNetCrossRef Song, Y., et al. (2014). A biology-based algorithm to minimal exposure problem of wireless sensor networks. IEEE Transactions on Network and Service Management, 11(3), 417–430.MathSciNetCrossRef
41.
Zurück zum Zitat Liu, Y., et al. (2010). Multi-layer clustering routing algorithm for wireless vehicular sensor networks. IET Communications, 4(7), 810–816.CrossRef Liu, Y., et al. (2010). Multi-layer clustering routing algorithm for wireless vehicular sensor networks. IET Communications, 4(7), 810–816.CrossRef
42.
Zurück zum Zitat Bhuiyan, M. Z. A., et al. (2015). Local area prediction-based mobile target tracking in wireless sensor networks. IEEE Transactions on Computers, 64(7), 1968–1982.MathSciNetCrossRefMATH Bhuiyan, M. Z. A., et al. (2015). Local area prediction-based mobile target tracking in wireless sensor networks. IEEE Transactions on Computers, 64(7), 1968–1982.MathSciNetCrossRefMATH
43.
Zurück zum Zitat Busch, C., et al. (2012). Approximating congestion + dilation in networks via “quality of routing” games. IEEE Transactions on Computers, 61(9), 1270–1283.MathSciNetCrossRef Busch, C., et al. (2012). Approximating congestion + dilation in networks via “quality of routing” games. IEEE Transactions on Computers, 61(9), 1270–1283.MathSciNetCrossRef
44.
Zurück zum Zitat Liu, L., et al. (2015). Physarum optimization: A biology-inspired algorithm for the steiner tree problem in networks. IEEE Transactions on Computers, 64(3), 819–832.MathSciNetMATH Liu, L., et al. (2015). Physarum optimization: A biology-inspired algorithm for the steiner tree problem in networks. IEEE Transactions on Computers, 64(3), 819–832.MathSciNetMATH
45.
Zurück zum Zitat Meng, T., et al. (2016). Spatial reusability-aware routing in multi-hop wireless networks. IEEE Transactions on Computers, IEEE TC, 65, 244–255.MathSciNetCrossRefMATH Meng, T., et al. (2016). Spatial reusability-aware routing in multi-hop wireless networks. IEEE Transactions on Computers, IEEE TC, 65, 244–255.MathSciNetCrossRefMATH
46.
Zurück zum Zitat Yang, M., et al. (2015). Software-defined and virtualized future mobile and wireless networks: A survey. ACM/Springer Mobile Networks and Applications, 20(1), 4–18.CrossRef Yang, M., et al. (2015). Software-defined and virtualized future mobile and wireless networks: A survey. ACM/Springer Mobile Networks and Applications, 20(1), 4–18.CrossRef
47.
Zurück zum Zitat Zhu, N., & Vasilakos, A. V. (2015) A generic framework for energy evaluation on wireless sensor networks. Wireless Networks, pp. 1–22. Zhu, N., & Vasilakos, A. V. (2015) A generic framework for energy evaluation on wireless sensor networks. Wireless Networks, pp. 1–22.
Metadaten
Titel
Potential position node placement approach via oppositional gravitational search for fulfill coverage and connectivity in target based wireless sensor networks
verfasst von
C. Jehan
D. Shalini Punithavathani
Publikationsdatum
08.04.2016
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 6/2017
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-016-1262-7

Weitere Artikel der Ausgabe 6/2017

Wireless Networks 6/2017 Zur Ausgabe

Neuer Inhalt