Skip to main content
Erschienen in: Wireless Networks 8/2018

06.05.2017

Power consumption analysis of video streaming in 4G LTE networks

verfasst von: Jingyu Zhang, Zhi-Jie Wang, Song Guo, Dingyu Yang, Gan Fang, Chunyi Peng, Minyi Guo

Erschienen in: Wireless Networks | Ausgabe 8/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Video streaming, one of the most popular technologies for online video playback, has already been applied to 4G LTE networks. Previous work has been devoted to understanding the power consumption in general 4G LTE networks, while it is still unclear how the online video streaming makes impact on the power performance of mobile devices. Inspired by this, this paper investigates the relationship between the mobile device’s power performance characteristics and the behaviours of video streaming in 4G LTE networks. There are many natural issues/questions that are clearly interesting and important, while it is non-trivial to answer these issues/questions exactly (e.g., where is the energy saving room? how much is it?). To address a series of issues like the above, we formulate our energy models together with an algorithm that can assist our analysis. Particularly, we design a systematic platform, and conduct a comprehensive and also deep analysis on the power consumption of video streaming in 4G LTE networks. Our experiments reveal us a series of valuable findings—the saving room in the network part is large (from 41.86 to 69.62%), the number of RRC tails and the transmission pattern could be promising for optimizing the power consumption, for example.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Simply speaking, the RRC tail refers to a network activity state that appears in some time interval. Its meaning will be clear after we introduce the background in Sect. 2.
 
2
Note that, reducing the number of RRC tails does not mean reducing the duration of a single RRC tail.
 
3
This model characterizes the “idle period with no traffic” in a more refined way.
 
4
Remark that these reference traces include themselves’ power traces and traffic traces. In our experiments the reference traces are obtained by “downloading video segment files”.
 
5
In this paper the hot point refers to a measured point whose power consumption is larger than some preset threshold. This threshold is asked to be larger than the power consumption of most measured points (that are extrated from the power trace of offline video playing).
 
6
Remark that the results in this table are obtained when we set the screen brightness to 100%. It is not hard to know that, if we set it to a lower value, the power consumption percentage of the network part shall increase. We emphasize that in this paper we are mainly interested in the power consumption of network part. The experimental results related to other parts could be mainly used for reference, whereas we believe those results are still useful, and thus we present them here.
 
7
A traffic point (resp., an idle point) refers to a measured point that has (resp., no) the data transmission.
 
8
In our experiments, \(\varDelta _{op}\) is conservatively set to 5%. In other words, if the potential saving room of a part or phase is less than 5%, we conceive conservatively it is not promising. In the following experiments, we shall not focus on studying such a part/phase.
 
9
Remark that it is the extreme case; this way, we can easily find out the extreme power saving room for online video streaming.
 
10
The reasons (the saving room varies) could be diversified (e.g., different configurations of network conditions).
 
11
Note that, we have attempted to observe directly the RRC states based on the process of video downloading. It, however, is not easy to observe the RRC phases (e.g., the RRC tail). In addition, the essence of video downloading is the transmission of packets. Here we thus simulate the process of the video downloading through sending the packets.
 
12
Note that, the QXDM tool can record eight local RRC states: Closing, IRAT To LTE Started, Suspend, Connected, Connecting, Idle Camped, Idle Not Camped, and Inactive. We can see that the local RRC states mentioned here is similar to, but somewhat different from the RRC states mentioned before. The RRC states mentioned before is a standard protocol. The local RRC states introduced by QXDM is used to differentiate the network activities in a more precise manner at the mobile client end.
 
13
This pattern involves five instant RRC states, while other three instant RRC states (i.e., IRAT To LTE Started, Suspend and Inactive) are not covered. This is mainly because our experiments are always conducted in 4G LTE networks, those three local RRC states naturally are not appeared in our traces. On the other hand, we can view the five local RRC states as following: the local “Connected” state corresponds to the RRC connected state; the local “Idle camped” state corresponds to the RRC idle state. The other three local states are the transitional states between the RRC connected and idle states.
 
14
The 4G LTE RRC states are different from those in 3G or previous mobile networks [14].
 
Literatur
3.
Zurück zum Zitat Huang, T.-Y., Johari, R., McKeown, N., Trunnell, M., & Watson, M. (2015). A buffer-based approach to rate adaptation: Evidence from a large video streaming service. ACM SIGCOMM Computer Communication Review, 44(4), 187–198.CrossRef Huang, T.-Y., Johari, R., McKeown, N., Trunnell, M., & Watson, M. (2015). A buffer-based approach to rate adaptation: Evidence from a large video streaming service. ACM SIGCOMM Computer Communication Review, 44(4), 187–198.CrossRef
4.
Zurück zum Zitat Stockhammer, T. (2011). Dynamic adaptive streaming over HTTP–: Standards and design principles. In MMSys (pp 133–144). Stockhammer, T. (2011). Dynamic adaptive streaming over HTTP–: Standards and design principles. In MMSys (pp 133–144).
5.
Zurück zum Zitat Zambelli, A. (2009). IIS smooth streaming technical overview. Microsoft Corporation, 3, 40. Zambelli, A. (2009). IIS smooth streaming technical overview. Microsoft Corporation, 3, 40.
7.
Zurück zum Zitat Suneja, S., Navda, V., Ramjee, R., & de Lara, E. (2013). Envi: Energy efficient video player for mobiles. In CellNet (pp. 25–30). Suneja, S., Navda, V., Ramjee, R., & de Lara, E. (2013). Envi: Energy efficient video player for mobiles. In CellNet (pp. 25–30).
8.
Zurück zum Zitat Deruyck, M., Tanghe, E., Plets, D., Martens, L., & Joseph, W. (2015). Optimizing LTE wireless access networks towards power consumption and electromagnetic exposure of human beings. Computer Networks, 94, 29–40.CrossRef Deruyck, M., Tanghe, E., Plets, D., Martens, L., & Joseph, W. (2015). Optimizing LTE wireless access networks towards power consumption and electromagnetic exposure of human beings. Computer Networks, 94, 29–40.CrossRef
9.
Zurück zum Zitat Eluwole, O. T., & Lohi M. (2012). Coordinated multipoint power consumption modeling for energy efficiency assessment in LTE/LTE-advanced cellular networks. In ICT (pp. 1–6). Eluwole, O. T., & Lohi M. (2012). Coordinated multipoint power consumption modeling for energy efficiency assessment in LTE/LTE-advanced cellular networks. In ICT (pp. 1–6).
10.
Zurück zum Zitat Imran, R., Shukair, M., Zorba, N., & Verikoukis, C. (2015). An energy saving strategy for LTE-A multiantenna systems. Mobile Networks and Applications, 20(5), 692–700.CrossRef Imran, R., Shukair, M., Zorba, N., & Verikoukis, C. (2015). An energy saving strategy for LTE-A multiantenna systems. Mobile Networks and Applications, 20(5), 692–700.CrossRef
11.
Zurück zum Zitat UMTS RRC protocol specification (version 12.4.0 Release 12). (2015). UMTS RRC protocol specification (version 12.4.0 Release 12). (2015).
12.
Zurück zum Zitat Deng, S., & Balakrishnan, H. (2012). Traffic-aware techniques to reduce 3G/LTE wireless energy consumption. In CoNEXT (pp. 181–192). Deng, S., & Balakrishnan, H. (2012). Traffic-aware techniques to reduce 3G/LTE wireless energy consumption. In CoNEXT (pp. 181–192).
13.
Zurück zum Zitat Huang, J., Qian, F., Gerber, A., Mao, Z. M., Sen, S., & Spatscheck, O. (2012). A close examination of performance and power characteristics of 4G LTE networks. In MobiSys (pp. 225–238). Huang, J., Qian, F., Gerber, A., Mao, Z. M., Sen, S., & Spatscheck, O. (2012). A close examination of performance and power characteristics of 4G LTE networks. In MobiSys (pp. 225–238).
14.
Zurück zum Zitat 3GPP TR 25.813: Radio interface protocol aspects (V7.1.0). (2006). 3GPP TR 25.813: Radio interface protocol aspects (V7.1.0). (2006).
16.
Zurück zum Zitat Wang, H., Roman, E., Yuan, L., Huang, Y., & Wang, R. (2014). Connectivity, coverage and power consumption in large-scale wireless sensor networks. Computer Networks, 75, 212–225.CrossRef Wang, H., Roman, E., Yuan, L., Huang, Y., & Wang, R. (2014). Connectivity, coverage and power consumption in large-scale wireless sensor networks. Computer Networks, 75, 212–225.CrossRef
17.
Zurück zum Zitat Vasilakos, V. (2016). A generic framework for energy evaluation on wireless sensor networks. Wireless Networks, 22(4), 1199–1220.CrossRef Vasilakos, V. (2016). A generic framework for energy evaluation on wireless sensor networks. Wireless Networks, 22(4), 1199–1220.CrossRef
18.
Zurück zum Zitat Li, P., Guo, S., & Jiankun, H. (2015). Energy-efficient cooperative communications for multimedia applications in multi-channel wireless networks. IEEE Transactions on Computers, 64(6), 1670–1679.MathSciNet Li, P., Guo, S., & Jiankun, H. (2015). Energy-efficient cooperative communications for multimedia applications in multi-channel wireless networks. IEEE Transactions on Computers, 64(6), 1670–1679.MathSciNet
19.
Zurück zum Zitat Xiang, L., Ge, X., Wang, C.-X., Li, F. Y., & Reichert, F. (2013). Energy efficiency evaluation of cellular networks based on spatial distributions of traffic load and power consumption. IEEE Transactions on Wireless Communications, 12(3), 961–973.CrossRef Xiang, L., Ge, X., Wang, C.-X., Li, F. Y., & Reichert, F. (2013). Energy efficiency evaluation of cellular networks based on spatial distributions of traffic load and power consumption. IEEE Transactions on Wireless Communications, 12(3), 961–973.CrossRef
20.
Zurück zum Zitat Lupia, A., & De Rango, F. (2015). Evaluation of the energy consumption introduced by a trust management scheme on mobile ad-hoc networks. Journal of Networks, 10(4), 240–251.CrossRef Lupia, A., & De Rango, F. (2015). Evaluation of the energy consumption introduced by a trust management scheme on mobile ad-hoc networks. Journal of Networks, 10(4), 240–251.CrossRef
21.
Zurück zum Zitat Tekkalmaz, M., & Korpeoglu, I. (2016). Distributed power-source-aware routing in wireless sensor networks. Wireless Networks, 22(4), 1381–1399.CrossRef Tekkalmaz, M., & Korpeoglu, I. (2016). Distributed power-source-aware routing in wireless sensor networks. Wireless Networks, 22(4), 1381–1399.CrossRef
22.
Zurück zum Zitat Narendran, K., Karthik, R. M., & Krishna, M. (2016). Iterative power control based admission control for wireless networks. Wireless Networks, 22(2), 619–633.CrossRef Narendran, K., Karthik, R. M., & Krishna, M. (2016). Iterative power control based admission control for wireless networks. Wireless Networks, 22(2), 619–633.CrossRef
24.
Zurück zum Zitat Jiang, H., Wang, K., Wang, Y., & Gao, M. (2016). Energy big data: A survey. IEEE Access, 4, 3844–3861.CrossRef Jiang, H., Wang, K., Wang, Y., & Gao, M. (2016). Energy big data: A survey. IEEE Access, 4, 3844–3861.CrossRef
25.
Zurück zum Zitat Wang, K., Wang, Y., Sun, Y., Guo, S., & Jinsong, W. (2016). Green industrial Internet of Things architecture: An energy-efficient perspective. IEEE Communications Magazine, 54(12), 48–54.CrossRef Wang, K., Wang, Y., Sun, Y., Guo, S., & Jinsong, W. (2016). Green industrial Internet of Things architecture: An energy-efficient perspective. IEEE Communications Magazine, 54(12), 48–54.CrossRef
26.
Zurück zum Zitat Chen, X., Wu, J., Cai, Y., Zhang, H., & Chen, T. (2015). Energy-efficiency oriented traffic offloading in wireless networks: A brief survey and a learning approach for heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 33(4), 627–640.CrossRef Chen, X., Wu, J., Cai, Y., Zhang, H., & Chen, T. (2015). Energy-efficiency oriented traffic offloading in wireless networks: A brief survey and a learning approach for heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 33(4), 627–640.CrossRef
27.
Zurück zum Zitat Pantazis, N. A., & Vergados, D. D. (2007). A survey on power control issues in wireless sensor networks. IEEE Communications Surveys and Tutorials (COMSUR), 9(1–4), 86–107.CrossRef Pantazis, N. A., & Vergados, D. D. (2007). A survey on power control issues in wireless sensor networks. IEEE Communications Surveys and Tutorials (COMSUR), 9(1–4), 86–107.CrossRef
28.
Zurück zum Zitat Sharrab, Y. O., & Sarhan, N. J. (2013). Aggregate power consumption modeling of live video streaming systems. In MMSys (pp. 60–71). Sharrab, Y. O., & Sarhan, N. J. (2013). Aggregate power consumption modeling of live video streaming systems. In MMSys (pp. 60–71).
29.
Zurück zum Zitat Hsiu, P. C., & Pang, A. C. (2012). Energy-efficient video multicast in 4G wireless systems. IEEE Transactions on Mobile Computing, 11(10), 1508–1522.CrossRef Hsiu, P. C., & Pang, A. C. (2012). Energy-efficient video multicast in 4G wireless systems. IEEE Transactions on Mobile Computing, 11(10), 1508–1522.CrossRef
30.
Zurück zum Zitat Kao, C. C., Yang, S. R., & Chang, L. F. (2013). A resource allocation scheme for scalable video multicast in WiMAX relay networks. IEEE Transactions on Mobile Computing, 12(1), 90–104.CrossRef Kao, C. C., Yang, S. R., & Chang, L. F. (2013). A resource allocation scheme for scalable video multicast in WiMAX relay networks. IEEE Transactions on Mobile Computing, 12(1), 90–104.CrossRef
31.
Zurück zum Zitat Go, Y., Kwon, O. C., & Song, H. (2015). An energy-efficient HTTP adaptive video streaming with networking cost constraint over heterogeneous wireless networks. IEEE Transations on Multimedia, 17(9), 1646–1657.CrossRef Go, Y., Kwon, O. C., & Song, H. (2015). An energy-efficient HTTP adaptive video streaming with networking cost constraint over heterogeneous wireless networks. IEEE Transations on Multimedia, 17(9), 1646–1657.CrossRef
32.
Zurück zum Zitat Ukhanova, A., Belyaev, E., Wang, L., & Forchhammer, S. (2012). Power consumption analysis of constant bit rate video transmission over 3G networks. Computer Communications, 35(14), 1695–1706.CrossRef Ukhanova, A., Belyaev, E., Wang, L., & Forchhammer, S. (2012). Power consumption analysis of constant bit rate video transmission over 3G networks. Computer Communications, 35(14), 1695–1706.CrossRef
33.
Zurück zum Zitat Hu, W., & Cao, G. (2015). Energy-aware video streaming on smartphones. In INFOCOM (pp. 1185–1193). Hu, W., & Cao, G. (2015). Energy-aware video streaming on smartphones. In INFOCOM (pp. 1185–1193).
34.
Zurück zum Zitat Hoque, M. A., Siekkinen, M., & Nurminen, J. K. (2013). Using crowd-sourced viewing statistics to save energy in wireless video streaming. In MOBICOM (pp. 377–388). Hoque, M. A., Siekkinen, M., & Nurminen, J. K. (2013). Using crowd-sourced viewing statistics to save energy in wireless video streaming. In MOBICOM (pp. 377–388).
35.
Zurück zum Zitat Zhang, L., Pathak, P. H., Wu, M., Zhao, Y., & Mohapatra, P. (2015) Accelword: Energy efficient hotword detection through accelerometer. In MobiSys (pp. 301–315). Zhang, L., Pathak, P. H., Wu, M., Zhao, Y., & Mohapatra, P. (2015) Accelword: Energy efficient hotword detection through accelerometer. In MobiSys (pp. 301–315).
36.
Zurück zum Zitat Holtkamp, H., Auer, G., Bazzi, S., & Haas, H. (2014). Minimizing base station power consumption. IEEE Journal on Selected Areas in Communications, 32(2), 297–306.CrossRef Holtkamp, H., Auer, G., Bazzi, S., & Haas, H. (2014). Minimizing base station power consumption. IEEE Journal on Selected Areas in Communications, 32(2), 297–306.CrossRef
37.
Zurück zum Zitat Tung, L.-P., Lin, Y.-D., Kuo, Y.-H., Lai, Y.-C., & Sivalingam, K. M. (2014). Reducing power consumption in LTE data scheduling with the constraints of channel condition and QoS. Computer Networks, 75, 149–159.CrossRef Tung, L.-P., Lin, Y.-D., Kuo, Y.-H., Lai, Y.-C., & Sivalingam, K. M. (2014). Reducing power consumption in LTE data scheduling with the constraints of channel condition and QoS. Computer Networks, 75, 149–159.CrossRef
38.
Zurück zum Zitat Zhang, J., Fang, G., Guo, M., & Peng, C. (2016). How video streaming consumes power in 4G LTE networks. In 17th IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM) (pp. 1–3). Zhang, J., Fang, G., Guo, M., & Peng, C. (2016). How video streaming consumes power in 4G LTE networks. In 17th IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM) (pp. 1–3).
39.
Zurück zum Zitat Aditya, S., & Katti, S. (2011). Flexcast: Graceful wireless video streaming. In MOBICOM (pp. 277–288). Aditya, S., & Katti, S. (2011). Flexcast: Graceful wireless video streaming. In MOBICOM (pp. 277–288).
40.
Zurück zum Zitat Yin, X., Jindal, A., Sekar, V., & Sinopoli, B. (2015). A control-theoretic approach for dynamic adaptive video streaming over HTTP. In SIGCOMM (pp. 325–338).CrossRef Yin, X., Jindal, A., Sekar, V., & Sinopoli, B. (2015). A control-theoretic approach for dynamic adaptive video streaming over HTTP. In SIGCOMM (pp. 325–338).CrossRef
41.
Zurück zum Zitat Wang, K., Mi, J., Xu, C., Zhu, Q., Shu, L., & Deng, D. J. (2016). Real-time load reduction in multimedia big data for mobile Internet. ACM Transactions on Multimedia Computing Communications & Applications, 12(5s), 76:1–76:20.CrossRef Wang, K., Mi, J., Xu, C., Zhu, Q., Shu, L., & Deng, D. J. (2016). Real-time load reduction in multimedia big data for mobile Internet. ACM Transactions on Multimedia Computing Communications & Applications, 12(5s), 76:1–76:20.CrossRef
42.
Zurück zum Zitat Mukerjee, M. K., Naylor, D., Jiang, J., Han, D., Seshan, S., & Zhang, H. (2015). Practical, real-time centralized control for CDN-based live video delivery. In SIGCOMM (pp. 311–324).CrossRef Mukerjee, M. K., Naylor, D., Jiang, J., Han, D., Seshan, S., & Zhang, H. (2015). Practical, real-time centralized control for CDN-based live video delivery. In SIGCOMM (pp. 311–324).CrossRef
43.
Zurück zum Zitat Dobrian, F., Sekar, V., Awan, A., Stoica, I., Joseph, D., Ganjam, A., et al. (2011). Understanding the impact of video quality on user engagement. ACM SIGCOMM Computer Communication Review, 41(4), 362–373.CrossRef Dobrian, F., Sekar, V., Awan, A., Stoica, I., Joseph, D., Ganjam, A., et al. (2011). Understanding the impact of video quality on user engagement. ACM SIGCOMM Computer Communication Review, 41(4), 362–373.CrossRef
44.
Zurück zum Zitat Balachandran, A., Sekar, V., Akella, A., Seshan, S., Stoica, I., & Zhang, H. (2013). Developing a predictive model of quality of experience for internet video. ACM SIGCOMM Computer Communication Review, 43(4), 339–350.CrossRef Balachandran, A., Sekar, V., Akella, A., Seshan, S., Stoica, I., & Zhang, H. (2013). Developing a predictive model of quality of experience for internet video. ACM SIGCOMM Computer Communication Review, 43(4), 339–350.CrossRef
Metadaten
Titel
Power consumption analysis of video streaming in 4G LTE networks
verfasst von
Jingyu Zhang
Zhi-Jie Wang
Song Guo
Dingyu Yang
Gan Fang
Chunyi Peng
Minyi Guo
Publikationsdatum
06.05.2017
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 8/2018
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-017-1519-9

Weitere Artikel der Ausgabe 8/2018

Wireless Networks 8/2018 Zur Ausgabe

Neuer Inhalt