Skip to main content
Erschienen in: Wireless Networks 7/2019

05.03.2018

A deep learning method based on convolutional neural network for automatic modulation classification of wireless signals

verfasst von: Yu Xu, Dezhi Li, Zhenyong Wang, Qing Guo, Wei Xiang

Erschienen in: Wireless Networks | Ausgabe 7/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Automatic modulation classification plays an important role in many fields to identify the modulation type of wireless signals in order to recover signals by demodulation. In this paper, we contribute to explore the suitable architecture of deep learning method in the domain of communication signal recognition. Based on architecture analysis of the convolutional neural network, we used real signal data generated by instrument as dataset, and achieved compatible recognition accuracy of modulation classification compared with several representative structure. We state that the deeper network architecture is not suitable for the signal recognition due to its different characteristic. In addition, we also discuss the difficult of training algorithm in deep learning methods and employ the transfer learning method in order to reap the benefits, which stabilize the training process and lift the performance. Finally, we adopt the denoising autoencoder to preprocess the received data and provide the ability to resist finite perturbations of the input. It contributes to a higher recognition accuracy and it also provide a new idea to design the denoising modulation recognition model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alain, G., & Bengio, Y. (2014). What regularized auto-encoders learn from the data generating distribution. Journal of Machine Learning Research, 15(1), 3563–3593.MathSciNetMATH Alain, G., & Bengio, Y. (2014). What regularized auto-encoders learn from the data generating distribution. Journal of Machine Learning Research, 15(1), 3563–3593.MathSciNetMATH
2.
Zurück zum Zitat Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157–166.CrossRef Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157–166.CrossRef
3.
Zurück zum Zitat Bourlard, H., & Kamp, Y. (1988). Auto-association by multilayer perceptrons and singular value decomposition. Biological Cybernetics, 59(4–5), 291.MathSciNetCrossRef Bourlard, H., & Kamp, Y. (1988). Auto-association by multilayer perceptrons and singular value decomposition. Biological Cybernetics, 59(4–5), 291.MathSciNetCrossRef
4.
Zurück zum Zitat Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. Journal of Machine Learning Research, 9, 249–256. Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. Journal of Machine Learning Research, 9, 249–256.
5.
Zurück zum Zitat Hazza, A., Shoaib, M., Alshebeili, S.A., & Fahad, A. (2013). An overview of feature-based methods for digital modulation classification. In: 1st International conference on communications, signal processing, and their applications (ICCSPA) (pp. 1–6). Hazza, A., Shoaib, M., Alshebeili, S.A., & Fahad, A. (2013). An overview of feature-based methods for digital modulation classification. In: 1st International conference on communications, signal processing, and their applications (ICCSPA) (pp. 1–6).
6.
Zurück zum Zitat He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In: IEEE conference on computer vision and pattern recognition (CVPR) (pp. 770–778) He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In: IEEE conference on computer vision and pattern recognition (CVPR) (pp. 770–778)
7.
Zurück zum Zitat He, K., Zhang, X., Ren, S., & Sun, J. (2016). Identity mappings in deep residual networks. In European conference on computer vision (pp. 630–645). He, K., Zhang, X., Ren, S., & Sun, J. (2016). Identity mappings in deep residual networks. In European conference on computer vision (pp. 630–645).
8.
Zurück zum Zitat Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. Computer Science, 3(4), 212–223. Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. Computer Science, 3(4), 212–223.
9.
Zurück zum Zitat Hinton, G. E., & Zemel, R. S. (1993). Autoencoders, minimum description length and helmholtz free energy. In International conference on neural information processing systems (pp. 3–10). Hinton, G. E., & Zemel, R. S. (1993). Autoencoders, minimum description length and helmholtz free energy. In International conference on neural information processing systems (pp. 3–10).
10.
Zurück zum Zitat Hyvrinen, A., Hurri, J., & Hoyer, P. O. (2005). Estimation of non-normalized statistical models. Journal of Machine Learning Research, 6(4), 695–709. Hyvrinen, A., Hurri, J., & Hoyer, P. O. (2005). Estimation of non-normalized statistical models. Journal of Machine Learning Research, 6(4), 695–709.
11.
Zurück zum Zitat Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(2), 2012. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(2), 2012.
12.
Zurück zum Zitat LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., et al. (1989). Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4), 541–551.CrossRef LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., et al. (1989). Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4), 541–551.CrossRef
13.
Zurück zum Zitat Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In International conference on international conference on machine learning (pp. 807–814). Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In International conference on international conference on machine learning (pp. 807–814).
14.
Zurück zum Zitat OShea, T. J., Corgan, J., & Clancy, T. C. (2016). Convolutional radio modulation recognition networks. In International conference on engineering applications of neural networks (pp. 213–226). OShea, T. J., Corgan, J., & Clancy, T. C. (2016). Convolutional radio modulation recognition networks. In International conference on engineering applications of neural networks (pp. 213–226).
15.
Zurück zum Zitat Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359.CrossRef Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359.CrossRef
16.
Zurück zum Zitat Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration methods. USSR Computational Mathematics & Mathematical Physics, 4(5), 791–803.CrossRef Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration methods. USSR Computational Mathematics & Mathematical Physics, 4(5), 791–803.CrossRef
17.
Zurück zum Zitat Rifai, S., Vincent, P., Muller, X., Glorot, X., & Bengio, Y. (2011). Contractive auto-encoders: Explicit invariance during feature extraction. In Proceedings of the 28th international conference on machine learning, ICML 2011 (pp. 833–840) Rifai, S., Vincent, P., Muller, X., Glorot, X., & Bengio, Y. (2011). Contractive auto-encoders: Explicit invariance during feature extraction. In Proceedings of the 28th international conference on machine learning, ICML 2011 (pp. 833–840)
18.
Zurück zum Zitat Tang, Y., & Eliasmith, C. (2010). Deep networks for robust visual recognition. In International conference on machine learning (pp. 1055–1062). Tang, Y., & Eliasmith, C. (2010). Deep networks for robust visual recognition. In International conference on machine learning (pp. 1055–1062).
19.
Zurück zum Zitat Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. A. (2008). Extracting and composing robust features with denoising autoencoders. In International conference on machine learning (pp. 1096–1103). Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. A. (2008). Extracting and composing robust features with denoising autoencoders. In International conference on machine learning (pp. 1096–1103).
20.
Zurück zum Zitat West, N. E., & O’Shea, T. (2017). Deep architectures for modulation recognition. In: IEEE international symposium on dynamic spectrum access networks (DySPAN) (pp. 1–6). West, N. E., & O’Shea, T. (2017). Deep architectures for modulation recognition. In: IEEE international symposium on dynamic spectrum access networks (DySPAN) (pp. 1–6).
21.
Zurück zum Zitat Yazan, E., & Talu, M. F. (2017). Comparison of the stochastic gradient descent based optimization techniques. In International artificial intelligence and data processing symposium (IDAP) (pp. 1–5) Yazan, E., & Talu, M. F. (2017). Comparison of the stochastic gradient descent based optimization techniques. In International artificial intelligence and data processing symposium (IDAP) (pp. 1–5)
22.
Zurück zum Zitat Zhu, X., & Fujii, T. (2017). A modulation classification method in cognitive radios system using stacked denoising sparse autoencoder. In IEEE Radio and Wireless Symposium (RWS) (pp. 218–220) Zhu, X., & Fujii, T. (2017). A modulation classification method in cognitive radios system using stacked denoising sparse autoencoder. In IEEE Radio and Wireless Symposium (RWS) (pp. 218–220)
Metadaten
Titel
A deep learning method based on convolutional neural network for automatic modulation classification of wireless signals
verfasst von
Yu Xu
Dezhi Li
Zhenyong Wang
Qing Guo
Wei Xiang
Publikationsdatum
05.03.2018
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 7/2019
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-018-1667-6

Weitere Artikel der Ausgabe 7/2019

Wireless Networks 7/2019 Zur Ausgabe

Neuer Inhalt