Skip to main content
Erschienen in: Wireless Networks 1/2020

05.07.2018

Joint optimization of channel allocation and power control for cognitive radio networks with multiple constraints

verfasst von: Xiaoli He, Hong Jiang, Yu Song, Ying Luo, QiuYun Zhang

Erschienen in: Wireless Networks | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the increasing demands for wireless communication, efficiently using the spectrum resource has always been an important research topic. In this paper, the problem of N pairs of Secondary Users (SU) sharing K available channels with M Primary Users and its associated problem of optimal channel allocation and power control are studied. To investigate a joint channel and power allocation for the underlay-based Cognitive Radio Networks, a sum-rate maximization problem of the SU with consideration of Quality of Service and the constraints of interference temperature and outage probability is formulated as a Mixed Integer Nonlinear Programming problem. To solve it, the objective function is divided into two sub-optimization problems: channel allocation and power control. First of all, we propose to use the Genetic Algorithm Channel Allocation algorithm (GACA) to solve the channel allocation optimization problem and get the optimal channel allocation strategy. The power control optimization is then followed, but the problem is a fractional form of function with coupling constraints that is non-convex and cannot be solved directly with convex optimization. To this end, when the SINR is sufficiently high, we obtain optimal power control strategy by introducing Geometric Programming and auxiliary variables to convert non-convex to Convex Geometric Programming. When SINR is the medium to low value, we use an iterative algorithm known as the Single Condensation Method to solve it. Finally, through our proposed iterative algorithm, that is, Joint Optimization Algorithm (JOA), the optimal solution is obtained. Moreover, the convergence and complexity of the algorithm are analyzed. The time complexity of JOA in the worst case is \(O(N^{3} \sqrt N )\). In order to show the generality of the channel state, in the simulation part, we design a perfect CSI optimal solution scenario and a imperfect CSI sub-optimal solution scenario. Simulation results show that the proposed algorithm can achieve better performance under different CSI states.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Benaya, A. M., Rosas, A. A., & Shokair, M. (2017). Proposed scheme for maximization of minimal throughput in MIMO underlay cognitive radio networks. Wireless Personal Communications,96(4), 5947–5958.CrossRef Benaya, A. M., Rosas, A. A., & Shokair, M. (2017). Proposed scheme for maximization of minimal throughput in MIMO underlay cognitive radio networks. Wireless Personal Communications,96(4), 5947–5958.CrossRef
3.
Zurück zum Zitat Federal Communications Commission. (2003). Notice of proposed rule making and order. ET Docket no. 03-222. Federal Communications Commission. (2003). Notice of proposed rule making and order. ET Docket no. 03-222.
4.
Zurück zum Zitat Cheng, Q., & Kollimarla, B. (2009, March). Joint channel and power allocation based on user satisfaction for cognitive radio. In 43rd annual conference on information sciences and systems, 2009. CISS 2009. (pp. 579–584). Cheng, Q., & Kollimarla, B. (2009, March). Joint channel and power allocation based on user satisfaction for cognitive radio. In 43rd annual conference on information sciences and systems, 2009. CISS 2009. (pp. 579–584).
5.
Zurück zum Zitat Liu, Y., Dong, L., & Marks, R. J. (2013, April). Common control channel assignment in cognitive radio networks using potential game theory. In Wireless communications and networking conference (WCNC), 2013 IEEE (pp. 315–320). Liu, Y., Dong, L., & Marks, R. J. (2013, April). Common control channel assignment in cognitive radio networks using potential game theory. In Wireless communications and networking conference (WCNC), 2013 IEEE (pp. 315–320).
6.
Zurück zum Zitat Park, P. (2015). Power controlled fair access protocol for wireless networked control systems. Wireless Networks,21(5), 1499–1516.CrossRef Park, P. (2015). Power controlled fair access protocol for wireless networked control systems. Wireless Networks,21(5), 1499–1516.CrossRef
7.
Zurück zum Zitat Zhao, G., Yang, C., Li, G. Y., Li, D., & Soong, A. C. (2011). Power and channel allocation for cooperative relay in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing,5(1), 151–159.CrossRef Zhao, G., Yang, C., Li, G. Y., Li, D., & Soong, A. C. (2011). Power and channel allocation for cooperative relay in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing,5(1), 151–159.CrossRef
8.
Zurück zum Zitat Lee, J., Wang, H., Andrews, J. G., & Hong, D. (2011). Outage probability of cognitive relay networks with interference constraints. IEEE Transactions on Wireless Communications,10(2), 390–395.CrossRef Lee, J., Wang, H., Andrews, J. G., & Hong, D. (2011). Outage probability of cognitive relay networks with interference constraints. IEEE Transactions on Wireless Communications,10(2), 390–395.CrossRef
9.
Zurück zum Zitat Li, F., Wang, L., Hua, J., Meng, L., & Zhang, J. (2015). Power optimization for dynamic spectrum access with convex optimization and intelligent algorithm. Wireless Networks,21(1), 161–172.CrossRef Li, F., Wang, L., Hua, J., Meng, L., & Zhang, J. (2015). Power optimization for dynamic spectrum access with convex optimization and intelligent algorithm. Wireless Networks,21(1), 161–172.CrossRef
10.
Zurück zum Zitat Hu, H., Zhang, H., & Yu, H. (2016). Energy-efficient sensing for delay-constrained cognitive radio systems via convex optimization. Journal of Optimization Theory and Applications,168(1), 310–331.MathSciNetCrossRef Hu, H., Zhang, H., & Yu, H. (2016). Energy-efficient sensing for delay-constrained cognitive radio systems via convex optimization. Journal of Optimization Theory and Applications,168(1), 310–331.MathSciNetCrossRef
11.
Zurück zum Zitat Lun, T., Lin, H., Huan, W., & Qian-bin, C. (2009, November). Power allocation based on Convex Optimization Theory for fading channels in OFDM-based cognitive radio networks. In International conference on wireless communications & signal processing, 2009. WCSP 2009. (pp. 1–5). Lun, T., Lin, H., Huan, W., & Qian-bin, C. (2009, November). Power allocation based on Convex Optimization Theory for fading channels in OFDM-based cognitive radio networks. In International conference on wireless communications & signal processing, 2009. WCSP 2009. (pp. 1–5).
12.
Zurück zum Zitat Zhou, F., Beaulieu, N. C., Li, Z., Si, J., & Qi, P. (2016). Energy-efficient optimal power allocation for fading cognitive radio channels: Ergodic capacity, outage capacity, and minimum-rate capacity. IEEE Transactions on Wireless Communications,15(4), 2741–2755.CrossRef Zhou, F., Beaulieu, N. C., Li, Z., Si, J., & Qi, P. (2016). Energy-efficient optimal power allocation for fading cognitive radio channels: Ergodic capacity, outage capacity, and minimum-rate capacity. IEEE Transactions on Wireless Communications,15(4), 2741–2755.CrossRef
13.
Zurück zum Zitat Devraj, A. M., Sharma, M. K., & Murthy, C. R. (2014). Power allocation in energy harvesting sensors with ARQ: A convex optimization approach. In IEEE global conference on signal and information processing (GlobalSIP), 2014 (pp. 208–212). Devraj, A. M., Sharma, M. K., & Murthy, C. R. (2014). Power allocation in energy harvesting sensors with ARQ: A convex optimization approach. In IEEE global conference on signal and information processing (GlobalSIP), 2014 (pp. 208–212).
14.
Zurück zum Zitat Chen, W. H., Lin, W. R., Tsao, H. C., & Lin, C. (2016). Probabilistic power allocation for cognitive radio networks with outage constraints and one-bit side information. IEEE Transactions on Signal Processing,64(4), 867–881.MathSciNetCrossRef Chen, W. H., Lin, W. R., Tsao, H. C., & Lin, C. (2016). Probabilistic power allocation for cognitive radio networks with outage constraints and one-bit side information. IEEE Transactions on Signal Processing,64(4), 867–881.MathSciNetCrossRef
15.
Zurück zum Zitat Seong, K., Mohseni, M., & Cioffi, J. M. (2006). Optimal resource allocation for OFDMA downlink systems. In IEEE international symposium on information theory, 2006 (pp. 1394–1398). Seong, K., Mohseni, M., & Cioffi, J. M. (2006). Optimal resource allocation for OFDMA downlink systems. In IEEE international symposium on information theory, 2006 (pp. 1394–1398).
16.
Zurück zum Zitat Xu, Y., & Zhao, X. (2015). Distributed power control for multiuser cognitive radio networks with quality of service and interference temperature constraints. Wireless Communications and Mobile Computing,15(14), 1773–1783.CrossRef Xu, Y., & Zhao, X. (2015). Distributed power control for multiuser cognitive radio networks with quality of service and interference temperature constraints. Wireless Communications and Mobile Computing,15(14), 1773–1783.CrossRef
17.
Zurück zum Zitat Zhao, N. (2016). Joint optimization of cooperative spectrum sensing and resource allocation in multi-channel cognitive radio sensor networks. Circuits, Systems, and Signal Processing,35(7), 2563–2583.CrossRef Zhao, N. (2016). Joint optimization of cooperative spectrum sensing and resource allocation in multi-channel cognitive radio sensor networks. Circuits, Systems, and Signal Processing,35(7), 2563–2583.CrossRef
18.
Zurück zum Zitat Liu, X., Li, F., & Na, Z. (2017). Optimal resource allocation in simultaneous cooperative spectrum sensing and energy harvesting for multichannel cognitive radio. IEEE Access,5, 3801–3812.CrossRef Liu, X., Li, F., & Na, Z. (2017). Optimal resource allocation in simultaneous cooperative spectrum sensing and energy harvesting for multichannel cognitive radio. IEEE Access,5, 3801–3812.CrossRef
19.
Zurück zum Zitat Kolodzy, P., & Avoidance, I. (2002). Spectrum policy task force. Federal Communication Commission, Washington, DC, Report ET Docket,40(4), 147–158. Kolodzy, P., & Avoidance, I. (2002). Spectrum policy task force. Federal Communication Commission, Washington, DC, Report ET Docket,40(4), 147–158.
20.
Zurück zum Zitat Xu, D., Feng, Z., Li, Y., & Zhang, P. (2011). Fair channel allocation and power control for uplink and downlink cognitive radio networks. In GLOBECOM Workshops (GC Wkshps), 2011 IEEE (pp. 591–596) Xu, D., Feng, Z., Li, Y., & Zhang, P. (2011). Fair channel allocation and power control for uplink and downlink cognitive radio networks. In GLOBECOM Workshops (GC Wkshps), 2011 IEEE (pp. 591–596)
21.
Zurück zum Zitat Hoang, A. T., & Liang, Y. C. (2006). Maximizing spectrum utilization of cognitive radio networks using channel allocation and power control. In IEEE 64th vehicular technology conference, 2006. VTC-2006 Fall (pp. 1–5). Hoang, A. T., & Liang, Y. C. (2006). Maximizing spectrum utilization of cognitive radio networks using channel allocation and power control. In IEEE 64th vehicular technology conference, 2006. VTC-2006 Fall (pp. 1–5).
22.
Zurück zum Zitat El Nainay, M. Y., Friend, D. H., & MacKenzie, A. B. (2008, October). Channel allocation & power control for dynamic spectrum cognitive networks using a localized island genetic algorithm. In 3rd IEEE symposium on new frontiers in dynamic spectrum access networks, 2008. DySPAN 2008 (pp. 1–5). El Nainay, M. Y., Friend, D. H., & MacKenzie, A. B. (2008, October). Channel allocation & power control for dynamic spectrum cognitive networks using a localized island genetic algorithm. In 3rd IEEE symposium on new frontiers in dynamic spectrum access networks, 2008. DySPAN 2008 (pp. 1–5).
23.
Zurück zum Zitat Chiang, M., Tan, C. W., Palomar, D. P., O’neill, D., & Julian, D. (2007). Power control by geometric programming. IEEE Transactions on Wireless Communications,6(7), 2640–2651.CrossRef Chiang, M., Tan, C. W., Palomar, D. P., O’neill, D., & Julian, D. (2007). Power control by geometric programming. IEEE Transactions on Wireless Communications,6(7), 2640–2651.CrossRef
24.
Zurück zum Zitat Singh, S., Teal, P. D., Dmochowski, P. A., & Coulson, A. J. (2012, June). Interference management in cognitive radio systems—A convex optimisation approach. In IEEE international conference on communications (ICC), 2012 (pp. 1884–1889). Singh, S., Teal, P. D., Dmochowski, P. A., & Coulson, A. J. (2012, June). Interference management in cognitive radio systems—A convex optimisation approach. In IEEE international conference on communications (ICC), 2012 (pp. 1884–1889).
25.
Zurück zum Zitat Hamdi, M., Yuan, D., & Zaied, M. (2017). GA-based scheme for fair joint channel allocation and power control for underlaying D2D multicast communications. In 13th international IEEE wireless communications and mobile computing conference (IWCMC), 2017 (pp. 446–451). Hamdi, M., Yuan, D., & Zaied, M. (2017). GA-based scheme for fair joint channel allocation and power control for underlaying D2D multicast communications. In 13th international IEEE wireless communications and mobile computing conference (IWCMC), 2017 (pp. 446–451).
26.
Zurück zum Zitat Shi, G. Y. (1981). Algorithms for generalized geometric programming and their convergence. Journal of Dalian Institute of Technology,3, 19–25.MathSciNet Shi, G. Y. (1981). Algorithms for generalized geometric programming and their convergence. Journal of Dalian Institute of Technology,3, 19–25.MathSciNet
27.
Zurück zum Zitat Kandukuri, S., & Boyd, S. (2002). Optimal power control in interference-limited fading wireless channels with outage-probability specifications. IEEE Transactions on Wireless Communications,1(1), 46–55.CrossRef Kandukuri, S., & Boyd, S. (2002). Optimal power control in interference-limited fading wireless channels with outage-probability specifications. IEEE Transactions on Wireless Communications,1(1), 46–55.CrossRef
28.
Zurück zum Zitat Singh, S., Teal, P. D., Dmochowski, P. A., & Coulson, A. J. (2012, June). Interference management in cognitive radio systems—A convex optimisation approach. In IEEE international conference on communications (ICC), 2012 (pp. 1884–1889). Singh, S., Teal, P. D., Dmochowski, P. A., & Coulson, A. J. (2012, June). Interference management in cognitive radio systems—A convex optimisation approach. In IEEE international conference on communications (ICC), 2012 (pp. 1884–1889).
29.
Zurück zum Zitat Liu, X., Jia, M., Gu, X. M., Yan, J. H., & Zhou, J. J. (2017). Optimal spectrum sensing and transmission power allocation in energy-efficiency multichannel cognitive radio with energy harvesting. International Journal of Communication Systems, 30(5), e3044.CrossRef Liu, X., Jia, M., Gu, X. M., Yan, J. H., & Zhou, J. J. (2017). Optimal spectrum sensing and transmission power allocation in energy-efficiency multichannel cognitive radio with energy harvesting. International Journal of Communication Systems, 30(5), e3044.CrossRef
30.
Zurück zum Zitat Xing, Y., Mathur, C. N., Haleem, M. A., Chandramouli, R., & Subbalakshmi, K. P. (2006). Dynamic spectrum access with QoS and interference temperature constraints. IEEE Transactions on Mobile Computing,1(8), 1–11. Xing, Y., Mathur, C. N., Haleem, M. A., Chandramouli, R., & Subbalakshmi, K. P. (2006). Dynamic spectrum access with QoS and interference temperature constraints. IEEE Transactions on Mobile Computing,1(8), 1–11.
32.
Zurück zum Zitat Wei, Z., Ng, D. W. K., Yuan, J., & Wang, H. M. (2017). Optimal resource allocation for power-efficient MC-NOMA with imperfect channel state information. IEEE Transactions on Communications,65(9), 3944–3961.CrossRef Wei, Z., Ng, D. W. K., Yuan, J., & Wang, H. M. (2017). Optimal resource allocation for power-efficient MC-NOMA with imperfect channel state information. IEEE Transactions on Communications,65(9), 3944–3961.CrossRef
33.
Zurück zum Zitat Masmoudi, R., Belmega, E. V., & Fijalkow, I. (2017). Impact of imperfect CSI on resource allocation in cognitive radio channels. In International workshop on pervasive and context-aware middleware (PerCAM 17) IEEE WiMOB 2017. Masmoudi, R., Belmega, E. V., & Fijalkow, I. (2017). Impact of imperfect CSI on resource allocation in cognitive radio channels. In International workshop on pervasive and context-aware middleware (PerCAM 17) IEEE WiMOB 2017.
34.
Zurück zum Zitat Wong, I. C., & Evans, B. L. (2009). Optimal resource allocation in OFDMA systems with imperfect channel knowledge. IEEE Transactions on Communications, 57(1), 232–241.CrossRef Wong, I. C., & Evans, B. L. (2009). Optimal resource allocation in OFDMA systems with imperfect channel knowledge. IEEE Transactions on Communications, 57(1), 232–241.CrossRef
Metadaten
Titel
Joint optimization of channel allocation and power control for cognitive radio networks with multiple constraints
verfasst von
Xiaoli He
Hong Jiang
Yu Song
Ying Luo
QiuYun Zhang
Publikationsdatum
05.07.2018
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 1/2020
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-018-1785-1

Weitere Artikel der Ausgabe 1/2020

Wireless Networks 1/2020 Zur Ausgabe

Neuer Inhalt