Skip to main content
Erschienen in: Wireless Networks 3/2020

14.06.2019

Physical layer security schemes for MIMO systems: an overview

verfasst von: Reem Melki, Hassan N. Noura, Mohammad M. Mansour, Ali Chehab

Erschienen in: Wireless Networks | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Physical layer security (PLS) has become an increasingly attractive topic since it promises current and future wireless systems both reliable and secure communication, without imposing any assumptions on the computational power of the eavesdroppers. PLS benefits from the randomness property of the wireless channel, which provides better immunity and prevents different attacks. On the other hand, the multiple-input multiple-output (MIMO) system has emerged as a key technology to support high data rates and improved energy and spectral efficiency, in addition to overcoming the effect of shadowing and fading. Recently, MIMO-based PLS has been addressed in the literature due to its wide adoption and its essential role in wireless communication systems. In this paper, we provide a comprehensive overview of various MIMO-based PLS techniques that target all kinds of security services namely, key generation and distribution, data confidentiality, authentication, and availability. With this overview, readers will have a better understanding of the MIMO-based PLS techniques present in the literature, their current limitations, and challenges.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Saxena, N., Roy, A., Sahu, B., & Kim, H. (2017). Efficient IoT gateway over 5G wireless: A new design with prototype and implementation results. IEEE Communications Magazine, 55(2), 97–105.CrossRef Saxena, N., Roy, A., Sahu, B., & Kim, H. (2017). Efficient IoT gateway over 5G wireless: A new design with prototype and implementation results. IEEE Communications Magazine, 55(2), 97–105.CrossRef
2.
Zurück zum Zitat Ford, R., Zhang, M., Mezzavilla, M., Dutta, S., Rangan, S., & Zorzi, M. (2017). Achieving ultra-low latency in 5G millimeter wave cellular networks. IEEE Communications Magazine, 55(3), 196–203.CrossRef Ford, R., Zhang, M., Mezzavilla, M., Dutta, S., Rangan, S., & Zorzi, M. (2017). Achieving ultra-low latency in 5G millimeter wave cellular networks. IEEE Communications Magazine, 55(3), 196–203.CrossRef
3.
Zurück zum Zitat Sun, S., MacCartney, G., & Rappaport, T. (2017). A novel millimeter-wave channel simulator and applications for 5G wireless communications. In Proceedings of the IEEE international conference on communications (ICC) (pp. 1–7). IEEE. Sun, S., MacCartney, G., & Rappaport, T. (2017). A novel millimeter-wave channel simulator and applications for 5G wireless communications. In Proceedings of the IEEE international conference on communications (ICC) (pp. 1–7). IEEE.
4.
Zurück zum Zitat Rappaport, T., Xing, Y., et al. (2017). Overview of millimeter wave communications for fifth-generation (5G) wireless networks-with a focus on propagation models. arXiv preprint arXiv:1708.02557 Rappaport, T., Xing, Y., et al. (2017). Overview of millimeter wave communications for fifth-generation (5G) wireless networks-with a focus on propagation models. arXiv preprint arXiv:​1708.​02557
5.
Zurück zum Zitat Wong, V., Schober, R., Ng, D., & Wang, L. (2017). Key technologies for 5G wireless systems. Cambridge: Cambridge University Press.CrossRef Wong, V., Schober, R., Ng, D., & Wang, L. (2017). Key technologies for 5G wireless systems. Cambridge: Cambridge University Press.CrossRef
6.
Zurück zum Zitat Cho, Y., Kim, J., Yang, W., & Kang, C. (2010). MIMO-OFDM wireless communications with MATLAB. New York: Wiley.CrossRef Cho, Y., Kim, J., Yang, W., & Kang, C. (2010). MIMO-OFDM wireless communications with MATLAB. New York: Wiley.CrossRef
7.
Zurück zum Zitat Fan, W., Carton, I., et al. (2017). A step toward 5G in 2020: Low-cost OTA performance evaluation of massive MIMO base stations. IEEE Antennas and Propagation Magazine, 59(1), 38–47.CrossRef Fan, W., Carton, I., et al. (2017). A step toward 5G in 2020: Low-cost OTA performance evaluation of massive MIMO base stations. IEEE Antennas and Propagation Magazine, 59(1), 38–47.CrossRef
8.
Zurück zum Zitat Molisch, A., et al. (2017). Hybrid beamforming for massive MIMO: A survey. IEEE Communications Magazine, 55(9), 134–141.CrossRef Molisch, A., et al. (2017). Hybrid beamforming for massive MIMO: A survey. IEEE Communications Magazine, 55(9), 134–141.CrossRef
9.
Zurück zum Zitat Umebayashi, K., et al. (2014). A study on secure pilot signal design for OFDM systems. In Asia-Pacific signal and information processing association annual summit and conference (APSIPA) (pp. 1–5). Umebayashi, K., et al. (2014). A study on secure pilot signal design for OFDM systems. In Asia-Pacific signal and information processing association annual summit and conference (APSIPA) (pp. 1–5).
10.
Zurück zum Zitat Massey, J. (1986). Cryptography—a selective survey. Digital Communications, 85, 3–25. Massey, J. (1986). Cryptography—a selective survey. Digital Communications, 85, 3–25.
11.
Zurück zum Zitat Bloch, M., et al. (2008). Wireless information-theoretic security. IEEE Transactions on Information Theory, 54(6), 2515–2534.CrossRefMathSciNetMATH Bloch, M., et al. (2008). Wireless information-theoretic security. IEEE Transactions on Information Theory, 54(6), 2515–2534.CrossRefMathSciNetMATH
13.
Zurück zum Zitat Ahlswede, R., et al. (1993). Common randomness in information theory and cryptography. I. Secret sharing. IEEE Transactions on Information Theory, 39(4), 1121–1132.CrossRefMathSciNetMATH Ahlswede, R., et al. (1993). Common randomness in information theory and cryptography. I. Secret sharing. IEEE Transactions on Information Theory, 39(4), 1121–1132.CrossRefMathSciNetMATH
15.
Zurück zum Zitat Bloch, M., & Barros, J. (2011). Physical-layer security. Cambridge: Cambridge University Press.CrossRefMATH Bloch, M., & Barros, J. (2011). Physical-layer security. Cambridge: Cambridge University Press.CrossRefMATH
16.
Zurück zum Zitat Mukherjee, A., et al. (2014). Principles of physical layer security in multiuser wireless networks: A survey. IEEE Communications Surveys & Tutorials, 16(3), 1550–1573.CrossRef Mukherjee, A., et al. (2014). Principles of physical layer security in multiuser wireless networks: A survey. IEEE Communications Surveys & Tutorials, 16(3), 1550–1573.CrossRef
18.
Zurück zum Zitat Gibalina, Z., et al. (2018). Estimation of capabilities of cooperative CubeSat systems based on Alamouti transmission scheme. In Systems of signal synchronization, generating and processing in telecommunications (SYNCHROINFO) (pp. 1–6). IEEE. Gibalina, Z., et al. (2018). Estimation of capabilities of cooperative CubeSat systems based on Alamouti transmission scheme. In Systems of signal synchronization, generating and processing in telecommunications (SYNCHROINFO) (pp. 1–6). IEEE.
19.
Zurück zum Zitat Shehab, W., & Al-qudah, Z. (2017). Singular value decomposition: Principles and applications in multiple input multiple output communication system. International Journal of Computer Networks and Communications, 9(1), 13–21.CrossRef Shehab, W., & Al-qudah, Z. (2017). Singular value decomposition: Principles and applications in multiple input multiple output communication system. International Journal of Computer Networks and Communications, 9(1), 13–21.CrossRef
20.
Zurück zum Zitat Abdelrahman, R.B.M., Mustafa, A.B.A., & Osman, A.A. (2015). A comparison between IEEE 802.11 n and ac standards. IOSR Journal of Computer Engineering (IOSR-JCE), 17(5), 30–34. Abdelrahman, R.B.M., Mustafa, A.B.A., & Osman, A.A. (2015). A comparison between IEEE 802.11 n and ac standards. IOSR Journal of Computer Engineering (IOSR-JCE), 17(5), 30–34.
22.
Zurück zum Zitat Schindler, D., et al. (2018). MIMO–OFDM radar using a linear frequency modulated carrier to reduce sampling requirements. IEEE Transactions on Microwave Theory and Techniques, 66(7), 3511–3520.CrossRef Schindler, D., et al. (2018). MIMO–OFDM radar using a linear frequency modulated carrier to reduce sampling requirements. IEEE Transactions on Microwave Theory and Techniques, 66(7), 3511–3520.CrossRef
23.
Zurück zum Zitat Rahmatallah, Y., & Mohan, S. (2013). Peak-to-average power ratio reduction in OFDM systems: A survey and taxonomy. IEEE Communications Surveys & Tutorials, 15(4), 1567–1592.CrossRef Rahmatallah, Y., & Mohan, S. (2013). Peak-to-average power ratio reduction in OFDM systems: A survey and taxonomy. IEEE Communications Surveys & Tutorials, 15(4), 1567–1592.CrossRef
24.
Zurück zum Zitat Bingham, J. (1990). Multicarrier modulation for data transmission: An idea whose time has come. IEEE Communications Magazine, 28(5), 5–14.CrossRef Bingham, J. (1990). Multicarrier modulation for data transmission: An idea whose time has come. IEEE Communications Magazine, 28(5), 5–14.CrossRef
25.
Zurück zum Zitat Prasad, R. (2004). OFDM for wireless communications systems. Norwood: Artech House. Prasad, R. (2004). OFDM for wireless communications systems. Norwood: Artech House.
28.
Zurück zum Zitat He, Q., & Schmeink, A. (2015). Comparison and evaluation between FBMC and OFDM systems. In Proceedings of the international ITG workshop on smart antennas (WSA) (pp. 1–7). VDE. He, Q., & Schmeink, A. (2015). Comparison and evaluation between FBMC and OFDM systems. In Proceedings of the international ITG workshop on smart antennas (WSA) (pp. 1–7). VDE.
29.
Zurück zum Zitat Roessler, A. (2016). 5G waveform candidates application note. Technical Report. 1MA271. Munich: Rohde & Schwarz. Roessler, A. (2016). 5G waveform candidates application note. Technical Report. 1MA271. Munich: Rohde & Schwarz.
30.
Zurück zum Zitat Barker, E., et al. (2012). Recommendation for key management part 1: General (revision 3). NIST Special Publication, 800(57), 1–147. Barker, E., et al. (2012). Recommendation for key management part 1: General (revision 3). NIST Special Publication, 800(57), 1–147.
31.
Zurück zum Zitat Zhang, J., et al. (2015). Verification of key generation from individual OFDM subcarrier’s channel response. In Proceedings of the IEEE global communication conference workshops (GC workshops) (pp. 1–6). Zhang, J., et al. (2015). Verification of key generation from individual OFDM subcarrier’s channel response. In Proceedings of the IEEE global communication conference workshops (GC workshops) (pp. 1–6).
32.
Zurück zum Zitat Rahbari, H., & Krunz, M. (2017). Exploiting frame preamble waveforms to support new physical-layer functions in OFDM-based 802.11 systems. IEEE Transactions on Wireless Communications, 16(6), 3775–3786.CrossRef Rahbari, H., & Krunz, M. (2017). Exploiting frame preamble waveforms to support new physical-layer functions in OFDM-based 802.11 systems. IEEE Transactions on Wireless Communications, 16(6), 3775–3786.CrossRef
34.
Zurück zum Zitat Paar, C., & Pelzl, J. (2009). Understanding cryptography: A textbook for students and practitioners. Berlin: Springer.MATH Paar, C., & Pelzl, J. (2009). Understanding cryptography: A textbook for students and practitioners. Berlin: Springer.MATH
35.
Zurück zum Zitat Wankhede, S.B. (2019). Study of network-based DoS attacks. In Nanoelectronics, circuits and communication systems (Vol. 511, pp. 611–616). Singapore: Springer. Wankhede, S.B. (2019). Study of network-based DoS attacks. In Nanoelectronics, circuits and communication systems (Vol. 511, pp. 611–616). Singapore: Springer.
36.
Zurück zum Zitat Wang, F., et al. (2017). Poster abstract: Security in uplink MU-MIMO networks. In V. Nath, JK Mandal (Eds.), IEEE/ACM second international conference on internet-of-things design and implementation (IoTDI) (pp. 351–352). Wang, F., et al. (2017). Poster abstract: Security in uplink MU-MIMO networks. In V. Nath, JK Mandal (Eds.), IEEE/ACM second international conference on internet-of-things design and implementation (IoTDI) (pp. 351–352).
37.
Zurück zum Zitat Tomasin, S. (2017). Comparison between asymmetric and symmetric channel-based authentication for MIMO systems. In International ITG workshop on smart antennas (WSA) (pp. 1–5). Tomasin, S. (2017). Comparison between asymmetric and symmetric channel-based authentication for MIMO systems. In International ITG workshop on smart antennas (WSA) (pp. 1–5).
38.
Zurück zum Zitat Xiao, L., et al. (2017). Game theoretic study on channel-based authentication in MIMO systems. IEEE Transactions on Vehicular Technology, 66(8), 7474–7484.CrossRef Xiao, L., et al. (2017). Game theoretic study on channel-based authentication in MIMO systems. IEEE Transactions on Vehicular Technology, 66(8), 7474–7484.CrossRef
39.
Zurück zum Zitat Xiao, L., et al. (2016). Channel-based authentication game in MIMO systems. In Proceedings of the IEEE global communications conference (GLOBECOM) (pp. 1–6). Xiao, L., et al. (2016). Channel-based authentication game in MIMO systems. In Proceedings of the IEEE global communications conference (GLOBECOM) (pp. 1–6).
40.
Zurück zum Zitat Topal, O., et al. (2017). Space-frequency grouping based key extraction for MIMO–OFDM systems. In International Symposium on wireless communication systems (ISWCS) (pp. 320–324). Topal, O., et al. (2017). Space-frequency grouping based key extraction for MIMO–OFDM systems. In International Symposium on wireless communication systems (ISWCS) (pp. 320–324).
41.
Zurück zum Zitat Chen, K., & Natarajan, B. (2016). Evaluating node reliability in cooperative MIMO networks. IEEE Transactions on Information Forensics and Security, 11(7), 1453–1460.CrossRef Chen, K., & Natarajan, B. (2016). Evaluating node reliability in cooperative MIMO networks. IEEE Transactions on Information Forensics and Security, 11(7), 1453–1460.CrossRef
42.
Zurück zum Zitat Cheng, L., et al. (2015). Secret key generation via random beamforming in stationary environment. In Proceedings of the international conference on wireless communications and signal processing (WCSP) (pp. 1–5). Cheng, L., et al. (2015). Secret key generation via random beamforming in stationary environment. In Proceedings of the international conference on wireless communications and signal processing (WCSP) (pp. 1–5).
43.
Zurück zum Zitat Yakovlev, V., et al. (2016). Secret key agreement based on a communication through wireless MIMO fading channels. In Federated conference on computer science and information systems (FedCSIS) (pp. 823–830). Yakovlev, V., et al. (2016). Secret key agreement based on a communication through wireless MIMO fading channels. In Federated conference on computer science and information systems (FedCSIS) (pp. 823–830).
44.
Zurück zum Zitat Qin, D., & Ding, Z. (2016). Exploiting multi-antenna non-reciprocal channels for shared secret key generation. IEEE Transactions on Information Forensics and Security, 11(12), 2693–2705.CrossRef Qin, D., & Ding, Z. (2016). Exploiting multi-antenna non-reciprocal channels for shared secret key generation. IEEE Transactions on Information Forensics and Security, 11(12), 2693–2705.CrossRef
45.
Zurück zum Zitat Chen, K., et al. (2015). Secret key generation rate with power allocation in relay-based LTE-A networks. IEEE Transactions on Information Forensics and Security, 10(11), 2424–2434.CrossRef Chen, K., et al. (2015). Secret key generation rate with power allocation in relay-based LTE-A networks. IEEE Transactions on Information Forensics and Security, 10(11), 2424–2434.CrossRef
46.
Zurück zum Zitat Taha, H., & Alsusa, E. (2017). Secret key establishment technique using channel state information driven phase randomisation in multiple-input multiple-output orthogonal frequency division multiplexing. IET Information Security, 11(1), 1–7.CrossRef Taha, H., & Alsusa, E. (2017). Secret key establishment technique using channel state information driven phase randomisation in multiple-input multiple-output orthogonal frequency division multiplexing. IET Information Security, 11(1), 1–7.CrossRef
47.
Zurück zum Zitat Choi, J. (2017). Secret key transmission for OFDM based machine type communications. Journal of Communications and Networks, 19(4), 363–370.CrossRef Choi, J. (2017). Secret key transmission for OFDM based machine type communications. Journal of Communications and Networks, 19(4), 363–370.CrossRef
48.
Zurück zum Zitat Choi, J., & Ha, J. (2016). Secret key transmission based on channel reciprocity for secure IoT. In European conference on networks and communications (EuCNC) (pp. 388–392). Choi, J., & Ha, J. (2016). Secret key transmission based on channel reciprocity for secure IoT. In European conference on networks and communications (EuCNC) (pp. 388–392).
49.
Zurück zum Zitat Furqan, H., et al. (2016). Secret key generation using channel quantization with SVD for reciprocal MIMO channels. In International Symposium on wireless communication systems (ISWCS) (pp. 597–602). Furqan, H., et al. (2016). Secret key generation using channel quantization with SVD for reciprocal MIMO channels. In International Symposium on wireless communication systems (ISWCS) (pp. 597–602).
50.
Zurück zum Zitat Wang, Y., & Zhang, L. (2017). High security orthogonal factorized channel scrambling scheme with location information embedded for MIMO-based VLC system. In IEEE Proceedings of the vehicular technology conference (VTC Spring) (pp. 1–5). Wang, Y., & Zhang, L. (2017). High security orthogonal factorized channel scrambling scheme with location information embedded for MIMO-based VLC system. In IEEE Proceedings of the vehicular technology conference (VTC Spring) (pp. 1–5).
51.
Zurück zum Zitat Taha, H., & Alsusa, E. (2016). Secret key exchange under physical layer security using MIMO private random precoding in FDD systems. In Proceedings of the IEEE international conference on communications (ICC) (pp. 1–6). Taha, H., & Alsusa, E. (2016). Secret key exchange under physical layer security using MIMO private random precoding in FDD systems. In Proceedings of the IEEE international conference on communications (ICC) (pp. 1–6).
52.
Zurück zum Zitat Taha, H., & Alsusa, E. (2015). A MIMO precoding based physical layer security technique for key exchange encryption. In IEEE Proceedings of the vehicular technology conference (VTC Spring) (pp. 1–5). Taha, H., & Alsusa, E. (2015). A MIMO precoding based physical layer security technique for key exchange encryption. In IEEE Proceedings of the vehicular technology conference (VTC Spring) (pp. 1–5).
53.
Zurück zum Zitat Taha, H., & Alsusa, E. (2017). Secret key exchange using private random precoding in MIMO FDD and TDD systems. IEEE Transactions on Vehicular Technology, 66(6), 4823–4833.CrossRef Taha, H., & Alsusa, E. (2017). Secret key exchange using private random precoding in MIMO FDD and TDD systems. IEEE Transactions on Vehicular Technology, 66(6), 4823–4833.CrossRef
54.
Zurück zum Zitat Yaacoub, E. (2016). On secret key generation with massive MIMO antennas using time-frequency-space dimensions. In IEEE Middle East conference on antennas and propagation (MECAP) (pp. 1–4). Yaacoub, E. (2016). On secret key generation with massive MIMO antennas using time-frequency-space dimensions. In IEEE Middle East conference on antennas and propagation (MECAP) (pp. 1–4).
55.
Zurück zum Zitat Taha, H., & Alsusa, E. (2017). Secret key exchange and authentication via randomized spatial modulation and phase shifting. IEEE Transactions on Vehicular Technology, 67(3), 2165–2177.CrossRef Taha, H., & Alsusa, E. (2017). Secret key exchange and authentication via randomized spatial modulation and phase shifting. IEEE Transactions on Vehicular Technology, 67(3), 2165–2177.CrossRef
56.
Zurück zum Zitat Taha, H., & Alsusa, E. (2017). PHY-SEC: Secret key exchange and authentication via random spatial modulation and phase shifting. In IEEE proceedings of the international wireless communications and mobile computing conference (IWCMC) (pp. 1327–1332). Taha, H., & Alsusa, E. (2017). PHY-SEC: Secret key exchange and authentication via random spatial modulation and phase shifting. In IEEE proceedings of the international wireless communications and mobile computing conference (IWCMC) (pp. 1327–1332).
57.
Zurück zum Zitat Chen, X., Ng, D., Gerstacker, W., & Chen, H. (2017). A survey on multiple-antenna techniques for physical layer security. IEEE Communications Surveys and Tutorials, 19(2), 1027–1053.CrossRef Chen, X., Ng, D., Gerstacker, W., & Chen, H. (2017). A survey on multiple-antenna techniques for physical layer security. IEEE Communications Surveys and Tutorials, 19(2), 1027–1053.CrossRef
58.
Zurück zum Zitat Guan, K., et al. (2016). A computationally efficient shift-register based information scrambling approach to physical layer security in MIMO-SDM systems. In Optical fiber communications conference and exhibition (OFC) (pp. 1–3). Guan, K., et al. (2016). A computationally efficient shift-register based information scrambling approach to physical layer security in MIMO-SDM systems. In Optical fiber communications conference and exhibition (OFC) (pp. 1–3).
59.
Zurück zum Zitat Guan, K., et al. (2015). Enhanced physical layer security of MIMO-SDM systems through information scrambling. In European conference on optical communication (ECOC) (pp. 1–3). Guan, K., et al. (2015). Enhanced physical layer security of MIMO-SDM systems through information scrambling. In European conference on optical communication (ECOC) (pp. 1–3).
60.
Zurück zum Zitat Tanigawa, Y., et al. (2017). A physical layer security scheme employing imaginary receiver for multiuser MIMO–OFDM systems. In Proceedings of the IEEE international conference on communications (ICC) (pp. 1–6). Tanigawa, Y., et al. (2017). A physical layer security scheme employing imaginary receiver for multiuser MIMO–OFDM systems. In Proceedings of the IEEE international conference on communications (ICC) (pp. 1–6).
61.
Zurück zum Zitat Ahmed, M., & Bai, L. (2017). Space time block coding aided physical layer security in Gaussian MIMO channels. In International Bhurban conference on applied sciences and technology (IBCAST) (pp. 805–808). Ahmed, M., & Bai, L. (2017). Space time block coding aided physical layer security in Gaussian MIMO channels. In International Bhurban conference on applied sciences and technology (IBCAST) (pp. 805–808).
62.
Zurück zum Zitat Liu, Y., et al. (2017). Secrecy capacity analysis of artificial noisy MIMO channels—an approach based on ordered eigenvalues of Wishart matrices. IEEE Transactions on Information Forensics and Security, 12(3), 617–630.CrossRef Liu, Y., et al. (2017). Secrecy capacity analysis of artificial noisy MIMO channels—an approach based on ordered eigenvalues of Wishart matrices. IEEE Transactions on Information Forensics and Security, 12(3), 617–630.CrossRef
63.
Zurück zum Zitat Li, G., & Hu, A. (2016). Virtual MIMO-based cooperative beamforming and jamming scheme for the clustered wireless sensor network security. In IEEE proceedings of the international conference communications China (ICCC), (pp. 2246–2250). Li, G., & Hu, A. (2016). Virtual MIMO-based cooperative beamforming and jamming scheme for the clustered wireless sensor network security. In IEEE proceedings of the international conference communications China (ICCC), (pp. 2246–2250).
64.
Zurück zum Zitat Chen, X., et al. (2015). Security in MIMO wireless hybrid channel with artificial noise. In International conference on cyber security of smart cities, industrial control system and communications (SSIC) (pp. 1–4). Chen, X., et al. (2015). Security in MIMO wireless hybrid channel with artificial noise. In International conference on cyber security of smart cities, industrial control system and communications (SSIC) (pp. 1–4).
65.
Zurück zum Zitat Shafie, A., et al. (2017). Hybrid spatio-temporal artificial noise design for secure MIMOME–OFDM systems. IEEE Transactions on Vehicular Technology, 66(5), 3871–3886. Shafie, A., et al. (2017). Hybrid spatio-temporal artificial noise design for secure MIMOME–OFDM systems. IEEE Transactions on Vehicular Technology, 66(5), 3871–3886.
66.
Zurück zum Zitat Kozai, Y., & Saba, T. (2015). An artificial fast fading generation scheme for physical layer security of MIMO–OFDM systems. In International conference on signal processing and communication systems (ICSPCS) (pp. 1–5). Kozai, Y., & Saba, T. (2015). An artificial fast fading generation scheme for physical layer security of MIMO–OFDM systems. In International conference on signal processing and communication systems (ICSPCS) (pp. 1–5).
67.
Zurück zum Zitat Li, X., et al. (2017). Hybrid massive MIMO for secure transmissions against stealthy eavesdroppers. IEEE Communications Letters, 21(1), 81–84.CrossRef Li, X., et al. (2017). Hybrid massive MIMO for secure transmissions against stealthy eavesdroppers. IEEE Communications Letters, 21(1), 81–84.CrossRef
68.
Zurück zum Zitat Khandaker, M., et al. (2017). Constructive interference based secure precoding. In IEEE proceedings of the international Symposium on information theory (ISIT), (pp. 2875–2879). Khandaker, M., et al. (2017). Constructive interference based secure precoding. In IEEE proceedings of the international Symposium on information theory (ISIT), (pp. 2875–2879).
69.
Zurück zum Zitat Chen, X., & Zhang, Y. (2017). Mode selection in MU-MIMO downlink networks: A physical-layer security perspective. IEEE Systems Journal, 11(2), 1128–1136.CrossRef Chen, X., & Zhang, Y. (2017). Mode selection in MU-MIMO downlink networks: A physical-layer security perspective. IEEE Systems Journal, 11(2), 1128–1136.CrossRef
70.
Zurück zum Zitat El Shafie, A., et al. (2016). Enhancing the PHY-layer security of MIMO buffer-aided relay networks. IEEE Wireless Communications Letters, 5(4), 400–403.CrossRefMathSciNet El Shafie, A., et al. (2016). Enhancing the PHY-layer security of MIMO buffer-aided relay networks. IEEE Wireless Communications Letters, 5(4), 400–403.CrossRefMathSciNet
71.
Zurück zum Zitat Zhang, L., et al. (2016). The performance of the MIMO physical layer security system with imperfect CSI. In IEEE conference on communications and network security (CNS) (pp. 346–347). Zhang, L., et al. (2016). The performance of the MIMO physical layer security system with imperfect CSI. In IEEE conference on communications and network security (CNS) (pp. 346–347).
72.
Zurück zum Zitat Chen, B., et al. (2016). Original symbol phase rotated secure transmission against powerful massive MIMO eavesdropper. IEEE Access, 4, 3016–3025.CrossRef Chen, B., et al. (2016). Original symbol phase rotated secure transmission against powerful massive MIMO eavesdropper. IEEE Access, 4, 3016–3025.CrossRef
73.
Zurück zum Zitat Chen, B., et al. (2016). Securing uplink transmission for lightweight single-antenna UEs in the presence of a massive MIMO eavesdropper. IEEE Access, 4, 5374–5384.CrossRef Chen, B., et al. (2016). Securing uplink transmission for lightweight single-antenna UEs in the presence of a massive MIMO eavesdropper. IEEE Access, 4, 5374–5384.CrossRef
74.
Zurück zum Zitat Zhang, L., et al. (2017). Non-linear transceiver design for secure communications with artificial noise-assisted MIMO relay. IET Communications, 11(6), 930–935.CrossRef Zhang, L., et al. (2017). Non-linear transceiver design for secure communications with artificial noise-assisted MIMO relay. IET Communications, 11(6), 930–935.CrossRef
75.
Zurück zum Zitat Yaacoub, E., & Al-Husseini, M. (2017). Achieving physical layer security with massive MIMO beamforming. In European conference on antennas and propagation (EUCAP) (pp. 1753–1757). Yaacoub, E., & Al-Husseini, M. (2017). Achieving physical layer security with massive MIMO beamforming. In European conference on antennas and propagation (EUCAP) (pp. 1753–1757).
76.
Zurück zum Zitat Tang, J., et al. (2015). Combining MIMO beamforming with security codes to achieve unconditional communication security. In IEEE proceedings of the international conference on communications in China (ICCC) (pp. 105–109). Tang, J., et al. (2015). Combining MIMO beamforming with security codes to achieve unconditional communication security. In IEEE proceedings of the international conference on communications in China (ICCC) (pp. 105–109).
77.
Zurück zum Zitat Tang, J., & Wen, H., et al. (2015). Combining MIMO beamforming with security codes to achieve unconditional communication security. In IEEE proceedings of the international conference on communications in China (ICCC) (pp. 105–109). Tang, J., & Wen, H., et al. (2015). Combining MIMO beamforming with security codes to achieve unconditional communication security. In IEEE proceedings of the international conference on communications in China (ICCC) (pp. 105–109).
78.
Zurück zum Zitat Wen, H., et al. (2014). Achieving secure communications over wiretap channels via security codes from resilient functions. IEEE Wireless Communications Letters, 3(3), 273–276.CrossRef Wen, H., et al. (2014). Achieving secure communications over wiretap channels via security codes from resilient functions. IEEE Wireless Communications Letters, 3(3), 273–276.CrossRef
79.
Zurück zum Zitat Zhang, Y., et al. (2015). Joint transmit antenna selection and jamming for security enhancement in MIMO wiretap channels. In IEEE proceedings of the international conference on communications in China (ICCC) (pp. 1–6). Zhang, Y., et al. (2015). Joint transmit antenna selection and jamming for security enhancement in MIMO wiretap channels. In IEEE proceedings of the international conference on communications in China (ICCC) (pp. 1–6).
80.
Zurück zum Zitat Jayasinghe, K., et al. (2015). Physical layer security for relay assisted MIMO D2D communication. In IEEE proceedings of the international conference on communications workshop (ICCW) (pp. 651–656). Jayasinghe, K., et al. (2015). Physical layer security for relay assisted MIMO D2D communication. In IEEE proceedings of the international conference on communications workshop (ICCW) (pp. 651–656).
81.
Zurück zum Zitat Fan, Y., et al. (2017). Physical layer security based on interference alignment in K-User MIMO Y wiretap channels. IEEE Access, 5, 5747–5759.CrossRef Fan, Y., et al. (2017). Physical layer security based on interference alignment in K-User MIMO Y wiretap channels. IEEE Access, 5, 5747–5759.CrossRef
82.
Zurück zum Zitat Gong, S., et al. (2017). Millimeter-wave secrecy beamforming designs for two-way amplify-and-forward MIMO relaying networks. IEEE Transactions on Vehicular Technology, 66(3), 2059–2071.CrossRef Gong, S., et al. (2017). Millimeter-wave secrecy beamforming designs for two-way amplify-and-forward MIMO relaying networks. IEEE Transactions on Vehicular Technology, 66(3), 2059–2071.CrossRef
83.
Zurück zum Zitat Qassim, Y., et al. (2017). Post-quantum hybrid security mechanism for MIMO systems. In International conference on computing, networking and communications (ICNC) (pp. 684–689). Qassim, Y., et al. (2017). Post-quantum hybrid security mechanism for MIMO systems. In International conference on computing, networking and communications (ICNC) (pp. 684–689).
84.
Zurück zum Zitat Lei, H., et al. (2017). On secure underlay MIMO cognitive radio networks with energy harvesting and transmit antenna selection. IEEE Transactions on Green Communications and Networking, 1(2), 192–203.CrossRefMathSciNet Lei, H., et al. (2017). On secure underlay MIMO cognitive radio networks with energy harvesting and transmit antenna selection. IEEE Transactions on Green Communications and Networking, 1(2), 192–203.CrossRefMathSciNet
85.
Zurück zum Zitat Kalantari, A., et al. (2016). Directional modulation via symbol-level precoding: A way to enhance security. IEEE Journal of Selected Topics in Signal Processing, 10(8), 1478–1493.CrossRef Kalantari, A., et al. (2016). Directional modulation via symbol-level precoding: A way to enhance security. IEEE Journal of Selected Topics in Signal Processing, 10(8), 1478–1493.CrossRef
86.
Zurück zum Zitat Hafez, M., et al. (2017). Secure spatial multiple access using directional modulation. IEEE Transactions on Wireless Communications, 17, 563–573.CrossRef Hafez, M., et al. (2017). Secure spatial multiple access using directional modulation. IEEE Transactions on Wireless Communications, 17, 563–573.CrossRef
87.
Zurück zum Zitat Li, Z., et al. (2015). Cooperative jamming for secure communications in MIMO cooperative cognitive radio networks. In Proceedings of the IEEE international conference on communications (ICC) (pp. 7609–7614). Li, Z., et al. (2015). Cooperative jamming for secure communications in MIMO cooperative cognitive radio networks. In Proceedings of the IEEE international conference on communications (ICC) (pp. 7609–7614).
88.
Zurück zum Zitat Li, L., et al. (2016). Improving wireless physical layer security via exploiting co-channel interference. IEEE Journal of Selected Topics in Signal Processing, 10(8), 1433–1448.CrossRef Li, L., et al. (2016). Improving wireless physical layer security via exploiting co-channel interference. IEEE Journal of Selected Topics in Signal Processing, 10(8), 1433–1448.CrossRef
89.
Zurück zum Zitat Ahn, S., et al. (2016). Enhancing physical-layer security in MISO wiretap channel with pilot-assisted channel estimation: Beamforming design for pilot jamming. In IEEE proceedings of the international conference on signal processing and communication systems (ICSPCS) (pp. 1–5). Ahn, S., et al. (2016). Enhancing physical-layer security in MISO wiretap channel with pilot-assisted channel estimation: Beamforming design for pilot jamming. In IEEE proceedings of the international conference on signal processing and communication systems (ICSPCS) (pp. 1–5).
90.
Zurück zum Zitat Yan, Q., et al. (2016). Jamming resilient communication using MIMO interference cancellation. IEEE Transactions on Information Forensics and Security, 11(7), 1486–1499.CrossRef Yan, Q., et al. (2016). Jamming resilient communication using MIMO interference cancellation. IEEE Transactions on Information Forensics and Security, 11(7), 1486–1499.CrossRef
91.
92.
Zurück zum Zitat Javed, I., et al. (2017). Novel schemes for interference-resilient OFDM wireless communication. International Journal of Communication Systems, 30(6), e3095.CrossRef Javed, I., et al. (2017). Novel schemes for interference-resilient OFDM wireless communication. International Journal of Communication Systems, 30(6), e3095.CrossRef
93.
Zurück zum Zitat Basciftci, Y., et al. (2015). Securing massive MIMO at the physical layer. In IEEE conference on communications and network security (CNS) (pp. 272–280). Basciftci, Y., et al. (2015). Securing massive MIMO at the physical layer. In IEEE conference on communications and network security (CNS) (pp. 272–280).
94.
Zurück zum Zitat Sodagari, S., & Clancy, T. (2012). Efficient jamming attacks on MIMO channels. In Proceedings of the IEEE international conference on communications (ICC) (pp. 852–856). IEEE. Sodagari, S., & Clancy, T. (2012). Efficient jamming attacks on MIMO channels. In Proceedings of the IEEE international conference on communications (ICC) (pp. 852–856). IEEE.
95.
Zurück zum Zitat Do, T., et al. (2017). Jamming-resistant receivers for the massive MIMO uplink. IEEE Transactions on Information Forensics and Security, 13(1), 210–223.CrossRef Do, T., et al. (2017). Jamming-resistant receivers for the massive MIMO uplink. IEEE Transactions on Information Forensics and Security, 13(1), 210–223.CrossRef
96.
Zurück zum Zitat Shen, W., et al. (2014). MCR decoding: A MIMO approach for defending against wireless jamming attacks. In IEEE Proceedings of the conference on communications and network security (CNS), (pp. 133–138). IEEE. Shen, W., et al. (2014). MCR decoding: A MIMO approach for defending against wireless jamming attacks. In IEEE Proceedings of the conference on communications and network security (CNS), (pp. 133–138). IEEE.
97.
Zurück zum Zitat Shen, W., et al. (2015). No time to demodulate-fast physical layer verification of friendly jamming. In IEEE proceedings of the military communications conference (MILCOM) (pp. 653–658). IEEE. Shen, W., et al. (2015). No time to demodulate-fast physical layer verification of friendly jamming. In IEEE proceedings of the military communications conference (MILCOM) (pp. 653–658). IEEE.
98.
Zurück zum Zitat Li, L., & Chigan, C. (2016). A virtual MIMO based anti-jamming strategy for cognitive radio networks. In Proceedings of the IEEE international conference on communications (ICC) (pp. 1–6). IEEE. Li, L., & Chigan, C. (2016). A virtual MIMO based anti-jamming strategy for cognitive radio networks. In Proceedings of the IEEE international conference on communications (ICC) (pp. 1–6). IEEE.
99.
Zurück zum Zitat Chaturvedi, P., & Gupta, K. (2013). Detection and prevention of various types of jamming attacks in wireless networks. IRACST-International Journal of Computer Networks and Wireless Communications (IJCNWC), 3(2), 2250–3501. Chaturvedi, P., & Gupta, K. (2013). Detection and prevention of various types of jamming attacks in wireless networks. IRACST-International Journal of Computer Networks and Wireless Communications (IJCNWC), 3(2), 2250–3501.
Metadaten
Titel
Physical layer security schemes for MIMO systems: an overview
verfasst von
Reem Melki
Hassan N. Noura
Mohammad M. Mansour
Ali Chehab
Publikationsdatum
14.06.2019
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 3/2020
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-019-02060-0

Weitere Artikel der Ausgabe 3/2020

Wireless Networks 3/2020 Zur Ausgabe

Neuer Inhalt