Skip to main content
Erschienen in: Wireless Networks 8/2020

09.07.2020

Detecting Byzantine attack in cognitive radio networks using machine learning

verfasst von: Rupam Sarmah, Amar Taggu, Ningrinla Marchang

Erschienen in: Wireless Networks | Ausgabe 8/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

One primary function in a cognitive radio network (CRN) is spectrum sensing. In an infrastructure-based CRN, instead of individual nodes independently sensing the presence of the incumbent signal and taking decisions thereon, a fusion center (FC) aggregates the sensing reports from the individual nodes and makes the final decision. Such collaborative spectrum sensing (CSS) is known to result in better sensing accuracy. On the other hand, CSS is vulnerable to Spectrum Sensing Data Falsification (SSDF) attack (a.k.a. Byzantine attack) wherein a node maliciously falsifies the sensing report prior to sending it to the FC, with the intention of disrupting the spectrum sensing process. This paper investigates the use of machine learning techniques, viz., SVM, Neural Network, Naive Bayes and Ensemble classifiers for detection of SSDF attacks in a CRN where the sensing reports are binary (i.e., either 1 or 0). The learning techniques are studied under two experimental scenarios: (a) when the training and test data are drawn from the same data-set, and (b) when separate data-sets are used for training and testing. Under the first scenario, of all the techniques, NN and Ensemble are the most robust showing consistently very good performance across varying presence of attackers in the system. Moreover performance comparison with an existing non-machine learning technique shows that the learning techniques are generally more robust than the existing algorithm under high presence of attackers. Under the second scenario, in a limited environment, Ensemble is the most robust method showing good overall performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kakalou, I., Psannis, K. E., Krawiec, P., & Badea, R. (2017). Cognitive radio network and network service chaining toward 5G: Challenges and requirements. IEEE Communications Magazine, 55(11), 145–151.CrossRef Kakalou, I., Psannis, K. E., Krawiec, P., & Badea, R. (2017). Cognitive radio network and network service chaining toward 5G: Challenges and requirements. IEEE Communications Magazine, 55(11), 145–151.CrossRef
2.
Zurück zum Zitat Zhang, L., Ding, G., Wu, Q., Zou, Y., Han, Z., & Wang, J. (2015). Byzantine attack and defense in cognitive radio networks: A survey. IEEE Communications Surveys and Tutorials, 17(3), 1342–1363.CrossRef Zhang, L., Ding, G., Wu, Q., Zou, Y., Han, Z., & Wang, J. (2015). Byzantine attack and defense in cognitive radio networks: A survey. IEEE Communications Surveys and Tutorials, 17(3), 1342–1363.CrossRef
3.
Zurück zum Zitat Attar, A., Tang, H., Vasilakos, A. V., Yu, F. R., & Leung, V. C. M. (2012). A survey of security challenges in cognitive radio networks: Solutions and future research directions. Proceedings of the IEEE, 100(12), 3172–3186.CrossRef Attar, A., Tang, H., Vasilakos, A. V., Yu, F. R., & Leung, V. C. M. (2012). A survey of security challenges in cognitive radio networks: Solutions and future research directions. Proceedings of the IEEE, 100(12), 3172–3186.CrossRef
4.
Zurück zum Zitat Cheng, Z., Song, T., Zhang, J., Hu, J., Hu, Y., Shen, L., Li, X., & Wu, J. (2017). Self-organizing map-based scheme against probabilistic SSDF attack in cognitive radio networks. In Proceedings of IEEE WCSP, 978-1-5386-2062-5. Cheng, Z., Song, T., Zhang, J., Hu, J., Hu, Y., Shen, L., Li, X., & Wu, J. (2017). Self-organizing map-based scheme against probabilistic SSDF attack in cognitive radio networks. In Proceedings of IEEE WCSP, 978-1-5386-2062-5.
5.
Zurück zum Zitat Marchang, N., Taggu, A., & Patra, A. K. (2018). Detecting Byzantine attack in cognitive radio networks by exploiting frequency and ordering properties. IEEE Transactions on Coginitive Communications and Networking, 4(4), 816–824.CrossRef Marchang, N., Taggu, A., & Patra, A. K. (2018). Detecting Byzantine attack in cognitive radio networks by exploiting frequency and ordering properties. IEEE Transactions on Coginitive Communications and Networking, 4(4), 816–824.CrossRef
6.
Zurück zum Zitat Li, H., & Han, Z. (2010). Catch me if you can: An abnormality detection approach for collaborative spectrum sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 9(11), 3554–3565.CrossRef Li, H., & Han, Z. (2010). Catch me if you can: An abnormality detection approach for collaborative spectrum sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 9(11), 3554–3565.CrossRef
7.
Zurück zum Zitat Duan, L., Min, A. W., Huang, J., & Shin, K. G. (2012). Attack prevention for collaborative spectrum sensing in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 30(9), 1658–1665.CrossRef Duan, L., Min, A. W., Huang, J., & Shin, K. G. (2012). Attack prevention for collaborative spectrum sensing in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 30(9), 1658–1665.CrossRef
8.
Zurück zum Zitat Wang, W., Chen, L., Shin, K. G., & Duan, L. (2015). Thwarting intelligent malicious behaviors in cooperative spectrum sensing. IEEE Transactions on Mobile Computing, 14(11), 2392–2405.CrossRef Wang, W., Chen, L., Shin, K. G., & Duan, L. (2015). Thwarting intelligent malicious behaviors in cooperative spectrum sensing. IEEE Transactions on Mobile Computing, 14(11), 2392–2405.CrossRef
9.
Zurück zum Zitat He, X., Dai, H., & Ning, P. (2013). HMM-based malicious user detection for robust collaborative spectrum sensing. IEEE Journal on Selected Areas in Communications, 31(11), 2196–2208.CrossRef He, X., Dai, H., & Ning, P. (2013). HMM-based malicious user detection for robust collaborative spectrum sensing. IEEE Journal on Selected Areas in Communications, 31(11), 2196–2208.CrossRef
10.
Zurück zum Zitat Zhu, F., & Seo, S. (2009). Enhanced robust cooperative spectrum sensing in cognitive radio. Journal of Communications and Networks, 11, 122–133.CrossRef Zhu, F., & Seo, S. (2009). Enhanced robust cooperative spectrum sensing in cognitive radio. Journal of Communications and Networks, 11, 122–133.CrossRef
11.
Zurück zum Zitat Patnaik, M., et al. (2019). PROLEMus: A proactive learning-based MAC protocol against PUEA and SSDF attacks in energy constrained cognitive radio networks. IEEE Transactions on Cognitive Communications and Networking, 5(2), 400–412.CrossRef Patnaik, M., et al. (2019). PROLEMus: A proactive learning-based MAC protocol against PUEA and SSDF attacks in energy constrained cognitive radio networks. IEEE Transactions on Cognitive Communications and Networking, 5(2), 400–412.CrossRef
12.
Zurück zum Zitat Le, T. N., Chin, W., & Kao, W. (2015). Cross-layer design for primary user emulation attacks detection in mobile cognitive radio networks. IEEE Communications Letters, 19(5), 799–802.CrossRef Le, T. N., Chin, W., & Kao, W. (2015). Cross-layer design for primary user emulation attacks detection in mobile cognitive radio networks. IEEE Communications Letters, 19(5), 799–802.CrossRef
13.
Zurück zum Zitat Alahmadi, A., Fang, Z., Song, T., & Li, T. (2015). Subband PUEA detection and mitigation in OFDM-based cognitive radio networks. IEEE Transactions on Information Forensics and Security, 10(10), 2131–2142.CrossRef Alahmadi, A., Fang, Z., Song, T., & Li, T. (2015). Subband PUEA detection and mitigation in OFDM-based cognitive radio networks. IEEE Transactions on Information Forensics and Security, 10(10), 2131–2142.CrossRef
14.
Zurück zum Zitat Lin, S., Wen, C., & Sethares, W. A. (2018). Two-tier device-based authentication protocol against PUEA attacks for IoT applications. IEEE Transactions on Signal and Information Processing over Networks, 4(1), 33–47.MathSciNetCrossRef Lin, S., Wen, C., & Sethares, W. A. (2018). Two-tier device-based authentication protocol against PUEA attacks for IoT applications. IEEE Transactions on Signal and Information Processing over Networks, 4(1), 33–47.MathSciNetCrossRef
15.
Zurück zum Zitat Karimi, M., & Sadough, S. M. S. (2018). Efficient transmission strategy for cognitive radio systems under primary user emulation attack. IEEE Systems Journal, 12(4), 3767–3774.CrossRef Karimi, M., & Sadough, S. M. S. (2018). Efficient transmission strategy for cognitive radio systems under primary user emulation attack. IEEE Systems Journal, 12(4), 3767–3774.CrossRef
16.
Zurück zum Zitat Gao, N., Jing, X., Huang, H., & Mu, J. (2017). Robust collaborative spectrum sensing using PHY-layer fingerprints in mobile cognitive radio networks. IEEE Communications Letters, 21(5), 1063–1066.CrossRef Gao, N., Jing, X., Huang, H., & Mu, J. (2017). Robust collaborative spectrum sensing using PHY-layer fingerprints in mobile cognitive radio networks. IEEE Communications Letters, 21(5), 1063–1066.CrossRef
17.
Zurück zum Zitat Ghaznavi, M., & Jamshidi, A. (2017). Defence against primary user emulation attack using statistical properties of the cognitive radio received power. IET Communications, 11(9), 1535–1542.CrossRef Ghaznavi, M., & Jamshidi, A. (2017). Defence against primary user emulation attack using statistical properties of the cognitive radio received power. IET Communications, 11(9), 1535–1542.CrossRef
18.
Zurück zum Zitat Alahmadi, A., Abdelhakim, M., Ren, J., & Li, T. (2014). Defense against primary user emulation attacks in cognitive radio networks using advanced encryption standard. IEEE Transactions on Information Forensics and Security, 9(5), 772–781.CrossRef Alahmadi, A., Abdelhakim, M., Ren, J., & Li, T. (2014). Defense against primary user emulation attacks in cognitive radio networks using advanced encryption standard. IEEE Transactions on Information Forensics and Security, 9(5), 772–781.CrossRef
19.
Zurück zum Zitat Chen, C., Cheng, H., & Yao, Y. (2011). Cooperative spectrum sensing in cognitive radio networks in the presence of the primary user emulation attack. IEEE Transactions on Wireless Communications, 10(7), 2135–2141.CrossRef Chen, C., Cheng, H., & Yao, Y. (2011). Cooperative spectrum sensing in cognitive radio networks in the presence of the primary user emulation attack. IEEE Transactions on Wireless Communications, 10(7), 2135–2141.CrossRef
20.
Zurück zum Zitat Zhu, H., Song, T., Wu, J., Li, X., & Hu, J. (2018) Cooperative spectrum sensing algorithm based on support vector machine against SSDF attack. In Proceedings IEEE ICC workshops (pp. 1–6). Zhu, H., Song, T., Wu, J., Li, X., & Hu, J. (2018) Cooperative spectrum sensing algorithm based on support vector machine against SSDF attack. In Proceedings IEEE ICC workshops (pp. 1–6).
21.
Zurück zum Zitat Farmani, F., Jannat-Abad, M. A., & Berangi, R. (2011). Detection of SSDF attack using SVDD algorithm in cognitive radio networks. In Proceedings of third international conference in computational intelligence, communication systems and networks (pp. 201–204). Farmani, F., Jannat-Abad, M. A., & Berangi, R. (2011). Detection of SSDF attack using SVDD algorithm in cognitive radio networks. In Proceedings of third international conference in computational intelligence, communication systems and networks (pp. 201–204).
22.
Zurück zum Zitat Huo, Y., Wang, Y., Lin, W., & Sun, R. Three-layer Bayesian model based spectrum sensing to detect malicious attacks in cognitive radio networks. In Proceedings of IEEE ICCW (pp. 1640–1645). Huo, Y., Wang, Y., Lin, W., & Sun, R. Three-layer Bayesian model based spectrum sensing to detect malicious attacks in cognitive radio networks. In Proceedings of IEEE ICCW (pp. 1640–1645).
23.
Zurück zum Zitat Nie, G., Ding, G., Zhang, Li, & Wu, Q. (2017). Byzantine defense in collaborative spectrum sensing via Bayesian learning. IEEE Access, 5, 20089–20098.CrossRef Nie, G., Ding, G., Zhang, Li, & Wu, Q. (2017). Byzantine defense in collaborative spectrum sensing via Bayesian learning. IEEE Access, 5, 20089–20098.CrossRef
24.
Zurück zum Zitat Fragkiadakis, A. G., Tragos, E. Z., & Askoxylakis, I. G. (2013). A survey on security threats and detection techniques in cognitive radio networks. IEEE Communications Surveys and Tutorials, 15(1), 428–445.CrossRef Fragkiadakis, A. G., Tragos, E. Z., & Askoxylakis, I. G. (2013). A survey on security threats and detection techniques in cognitive radio networks. IEEE Communications Surveys and Tutorials, 15(1), 428–445.CrossRef
25.
Zurück zum Zitat Hlavacek, D., & Chang, J. M. (2014). A layered approach to cognitive radio network security: A survey. Computer Networks, 75(Part A), 414–436.CrossRef Hlavacek, D., & Chang, J. M. (2014). A layered approach to cognitive radio network security: A survey. Computer Networks, 75(Part A), 414–436.CrossRef
26.
Zurück zum Zitat Rina, K., Nath, S., Marchang, N., & Taggu, A. (2018). Can clustering be used to detect intrusion during spectrum sensing in cognitive radio networks? IEEE Systems Journal, 12(1), 938–947.CrossRef Rina, K., Nath, S., Marchang, N., & Taggu, A. (2018). Can clustering be used to detect intrusion during spectrum sensing in cognitive radio networks? IEEE Systems Journal, 12(1), 938–947.CrossRef
27.
Zurück zum Zitat Zhao, F., Li, S., & Feng, J. (2019). Securing cooperative spectrum sensing against DC-SSDF attack using trust fluctuation clustering analysis in cognitive radio networks. Hindawi Wireless Communications and Mobile Computing Volume 2019. Article ID, 3174304. Zhao, F., Li, S., & Feng, J. (2019). Securing cooperative spectrum sensing against DC-SSDF attack using trust fluctuation clustering analysis in cognitive radio networks. Hindawi Wireless Communications and Mobile Computing Volume 2019. Article ID, 3174304.
28.
Zurück zum Zitat Ahmed, M. E., Song, J. B., & Han, Z. (2014). Mitigating malicious attacks using bayesian non-parametric clustering in collaborative cognitive radio networks. In Proceedings of IEEE Globecom—Cognitive radio and networks symposium (pp. 999–1004) Ahmed, M. E., Song, J. B., & Han, Z. (2014). Mitigating malicious attacks using bayesian non-parametric clustering in collaborative cognitive radio networks. In Proceedings of IEEE Globecom—Cognitive radio and networks symposium (pp. 999–1004)
29.
Zurück zum Zitat Penna, F., Sun, Y., Dolecek, L., & Cabric, D. (2011). Joint spectrum sensing and detection of malicious nodes via belief propagation. Proceedings of IEEE Globecom, 2011, 1–5. Penna, F., Sun, Y., Dolecek, L., & Cabric, D. (2011). Joint spectrum sensing and detection of malicious nodes via belief propagation. Proceedings of IEEE Globecom, 2011, 1–5.
30.
Zurück zum Zitat Akbari, K., & Abouei, J. (2018). Signal classification for detecting primary user emulation attack in centralized cognitive radio networks. In Proceedings of 26th Iranian conference on electrical engineering (pp. 342–347). Akbari, K., & Abouei, J. (2018). Signal classification for detecting primary user emulation attack in centralized cognitive radio networks. In Proceedings of 26th Iranian conference on electrical engineering (pp. 342–347).
31.
Zurück zum Zitat Zhou, M., Shen, J., Chen, H., & Xie, L. (2013). A cooperative spectrum sensing scheme based on the Bayesian reputation model in cognitive radio networks. In Proceedings of IEEE wireless communications and networking conference(WCNC):MAC (pp. 614–619). Zhou, M., Shen, J., Chen, H., & Xie, L. (2013). A cooperative spectrum sensing scheme based on the Bayesian reputation model in cognitive radio networks. In Proceedings of IEEE wireless communications and networking conference(WCNC):MAC (pp. 614–619).
32.
Zurück zum Zitat Penna, F., Sun, Y., Dolecek, L., & Cabric, D. (2012). Detecting and counteracting statistical attacks in cooperative spectrum sensing. IEEE Transactions on Signal Processing, 60(4), 1806–1822.MathSciNetCrossRef Penna, F., Sun, Y., Dolecek, L., & Cabric, D. (2012). Detecting and counteracting statistical attacks in cooperative spectrum sensing. IEEE Transactions on Signal Processing, 60(4), 1806–1822.MathSciNetCrossRef
33.
Zurück zum Zitat Jaglan, R. R., Mustafa, R., & Agrawal, S. (2018). Scalable and robust ANN based cooperative spectrum sensing for cognitive radio networks. Wireless Personal Communications, 99(3), 1141–1157.CrossRef Jaglan, R. R., Mustafa, R., & Agrawal, S. (2018). Scalable and robust ANN based cooperative spectrum sensing for cognitive radio networks. Wireless Personal Communications, 99(3), 1141–1157.CrossRef
34.
Zurück zum Zitat Ye, N., Emran, S. M., Chen, Q., & Vilbert, S. (2002). Multivariate statistical analysis of audit trials for host-based intrusion detection. IEEE Transactions on Computers, 51(7), 810–820.CrossRef Ye, N., Emran, S. M., Chen, Q., & Vilbert, S. (2002). Multivariate statistical analysis of audit trials for host-based intrusion detection. IEEE Transactions on Computers, 51(7), 810–820.CrossRef
35.
Zurück zum Zitat Panchal, G., Ganatra, A., Kosta, Y. P., & Panchal, D. (2011). Behaviour analysis of multilayer perceptrons with multiple hidden neurons and hidden layers. International Journal of Computer Theory and Engineering, 3(2), 332–337.CrossRef Panchal, G., Ganatra, A., Kosta, Y. P., & Panchal, D. (2011). Behaviour analysis of multilayer perceptrons with multiple hidden neurons and hidden layers. International Journal of Computer Theory and Engineering, 3(2), 332–337.CrossRef
36.
Zurück zum Zitat GnanaSheela, K., & Deepa, S. N. (2013). Review on methods to fix number of hidden neurons in neural networks. Hindawi Publishing Corporation: Mathematical Problems in Engineering, Volume 2013. ArticleID, 425740. GnanaSheela, K., & Deepa, S. N. (2013). Review on methods to fix number of hidden neurons in neural networks. Hindawi Publishing Corporation: Mathematical Problems in Engineering, Volume 2013. ArticleID, 425740.
37.
Zurück zum Zitat Spectrum Policy Task Force, Fed. Commun. Comm., ET Docket No. 02-135 Tech. Rep., Nov (2002) Spectrum Policy Task Force, Fed. Commun. Comm., ET Docket No. 02-135 Tech. Rep., Nov (2002)
Metadaten
Titel
Detecting Byzantine attack in cognitive radio networks using machine learning
verfasst von
Rupam Sarmah
Amar Taggu
Ningrinla Marchang
Publikationsdatum
09.07.2020
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 8/2020
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02398-w

Weitere Artikel der Ausgabe 8/2020

Wireless Networks 8/2020 Zur Ausgabe

Neuer Inhalt