Skip to main content
Erschienen in: Wireless Networks 1/2021

07.10.2020

Energy-efficient computation offloading strategy with tasks scheduling in edge computing

verfasst von: Yue Zhang, Jingqi Fu

Erschienen in: Wireless Networks | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In mobile edge computing systems, the energy consumption and execution delay can be reduced dramatically by mobile edge computation offloading (MECO) . However, due to the limited computing capacity of edge cloud, an energy-efficient offloading strategy plays a significant role. In this paper, the offloading decision problem for multi-device edge computing systems based on time-division multiple access is studied. The scheduling of offloading devices at the edge cloud is considered when modelling the edge computing system. Then, the offloading decision problem is formulated as an energy consumption minimization problem with the constraint of latency tolerance. It is a mixed integer programming problem of NP-hardness. To address the problem, a Dynamic Programming-based Energy Saving Offloading (DPESO) algorithm is designed to obtain the offloading strategy including the offloading option, offloading sequence and transmission power. First, the MECO with infinite edge cloud capacity is solved by device classification and transmission power decision. Then, we sort and adjust the offloading devices to meet the latency tolerance for the MECO with finite edge cloud capacity. Finally, simulation results demonstrate that the DPESO algorithm achieves better energy efficiency than the baseline strategies and has good scalability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Although we assume a TDMA scenario, our analysis can be extended into other access schemes with a minor modification on the framework.
 
Literatur
1.
Zurück zum Zitat Mung, C., & Zhang, T. (2016). Fog and IoT: An overview of research opportunities. IEEE Internet of Things Journal, 3(6), 854–864.CrossRef Mung, C., & Zhang, T. (2016). Fog and IoT: An overview of research opportunities. IEEE Internet of Things Journal, 3(6), 854–864.CrossRef
3.
Zurück zum Zitat Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and challenges. IEEE Internet of Things Journal, 3(5), 637–646.CrossRef Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and challenges. IEEE Internet of Things Journal, 3(5), 637–646.CrossRef
4.
Zurück zum Zitat Sun, X., & Ansari, N. (2016). EdgeIoT: Mobile edge computing for the Internet of Things. IEEE Communications Magazine, 54(12), 22–29.CrossRef Sun, X., & Ansari, N. (2016). EdgeIoT: Mobile edge computing for the Internet of Things. IEEE Communications Magazine, 54(12), 22–29.CrossRef
5.
Zurück zum Zitat Mach, P., & Becvar, Z. (2017). Mobile edge computing: A survey on architecture and computation offloading. IEEE Communications Surveys & Tutorials, 19(3), 1628–1656.CrossRef Mach, P., & Becvar, Z. (2017). Mobile edge computing: A survey on architecture and computation offloading. IEEE Communications Surveys & Tutorials, 19(3), 1628–1656.CrossRef
6.
Zurück zum Zitat Liu, F., Huang, Z., & Wang, L. (2019). Energy-efficient collaborative task computation offloading in cloud-assisted edge computing for IoT sensors. Sensors (Basel), 19(5), 1105.CrossRef Liu, F., Huang, Z., & Wang, L. (2019). Energy-efficient collaborative task computation offloading in cloud-assisted edge computing for IoT sensors. Sensors (Basel), 19(5), 1105.CrossRef
7.
Zurück zum Zitat You, C., Huang, K., Chae, H., & Kim, B. H. (2017). Energy-efficient resource allocation for mobile-edge computation offloading. IEEE Transactions on Wireless Communications, 16(3), 1397–1411.CrossRef You, C., Huang, K., Chae, H., & Kim, B. H. (2017). Energy-efficient resource allocation for mobile-edge computation offloading. IEEE Transactions on Wireless Communications, 16(3), 1397–1411.CrossRef
9.
Zurück zum Zitat Kumar, K., Liu, J., Lu, Y.-H., & Bhargava, B. (2012). A survey of computation offloading for mobile systems. Mobile Networks and Applications, 18(1), 129–140.CrossRef Kumar, K., Liu, J., Lu, Y.-H., & Bhargava, B. (2012). A survey of computation offloading for mobile systems. Mobile Networks and Applications, 18(1), 129–140.CrossRef
10.
Zurück zum Zitat Liu, H., Eldarrat, F., Alqahtani, H., Reznik, A., de Foy, X., & Zhang, Y., (2018). Mobile edge cloud system: Architectures, challenges, and approaches. IEEE Systems Journal, 12(3), 2495–2508.CrossRef Liu, H., Eldarrat, F., Alqahtani, H., Reznik, A., de Foy, X., & Zhang, Y., (2018). Mobile edge cloud system: Architectures, challenges, and approaches. IEEE Systems Journal, 12(3), 2495–2508.CrossRef
11.
Zurück zum Zitat Wang, S., Zhang, X., Zhang, Y., Wang, L., Yang, J., & Wang, W. (2017). A survey on mobile edge networks: convergence of computing, caching and communications. IEEE Access, 5, 6757–6779.CrossRef Wang, S., Zhang, X., Zhang, Y., Wang, L., Yang, J., & Wang, W. (2017). A survey on mobile edge networks: convergence of computing, caching and communications. IEEE Access, 5, 6757–6779.CrossRef
13.
Zurück zum Zitat Mao, Y., Zhang, J., & Letaief, K. (2016). Dynamic computation offloading for mobile-edge computing with energy harvesting devices. IEEE Journal on Selected Areas in Communications, 34(12), 3590–3605.CrossRef Mao, Y., Zhang, J., & Letaief, K. (2016). Dynamic computation offloading for mobile-edge computing with energy harvesting devices. IEEE Journal on Selected Areas in Communications, 34(12), 3590–3605.CrossRef
15.
Zurück zum Zitat Xiang, X., Lin, C., & Chen, X. (2014). Energy-efficient link selection and transmission scheduling in mobile cloud computing. IEEE Wireless Communications Letters, 3(2), 153–156.CrossRef Xiang, X., Lin, C., & Chen, X. (2014). Energy-efficient link selection and transmission scheduling in mobile cloud computing. IEEE Wireless Communications Letters, 3(2), 153–156.CrossRef
16.
Zurück zum Zitat Zhang, W., Wen, Y., Guan, K., Kilper, D., Luo, H., & Wu, D. (2013). Energy-optimal mobile cloud computing under stochastic wireless channel. IEEE Transactions on Wireless Communications, 12(9), 4569–4581.CrossRef Zhang, W., Wen, Y., Guan, K., Kilper, D., Luo, H., & Wu, D. (2013). Energy-optimal mobile cloud computing under stochastic wireless channel. IEEE Transactions on Wireless Communications, 12(9), 4569–4581.CrossRef
17.
Zurück zum Zitat Du, J., Zhao, L., Feng, J., & Chu, X. (2018). Computation offloading and resource allocation in mixed fog/cloud computing systems with min–max fairness guarantee. IEEE Transactions on Communications, 66(4), 1594–1608.CrossRef Du, J., Zhao, L., Feng, J., & Chu, X. (2018). Computation offloading and resource allocation in mixed fog/cloud computing systems with min–max fairness guarantee. IEEE Transactions on Communications, 66(4), 1594–1608.CrossRef
18.
Zurück zum Zitat Guo, S., Liu, J., Yang, Y., Xiao, B., & Li, Z. (2019). Energy-efficient dynamic computation offloading and cooperative task scheduling in mobile cloud computing. IEEE Transactions on Mobile Computing, 18(2), 319–333.CrossRef Guo, S., Liu, J., Yang, Y., Xiao, B., & Li, Z. (2019). Energy-efficient dynamic computation offloading and cooperative task scheduling in mobile cloud computing. IEEE Transactions on Mobile Computing, 18(2), 319–333.CrossRef
19.
Zurück zum Zitat Yang, L., Cao, J., Cheng, H., & Ji, Y. (2015). Multi-user computation partitioning for latency sensitive mobile cloud applications. IEEE Transactions on Computers, 64(8), 2253–2266.MathSciNetCrossRef Yang, L., Cao, J., Cheng, H., & Ji, Y. (2015). Multi-user computation partitioning for latency sensitive mobile cloud applications. IEEE Transactions on Computers, 64(8), 2253–2266.MathSciNetCrossRef
20.
Zurück zum Zitat Chen, X., Jiao, L., Li, W., & Fu, X. (2016). Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Transactions on Networking, 24(5), 2795–2808.CrossRef Chen, X., Jiao, L., Li, W., & Fu, X. (2016). Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Transactions on Networking, 24(5), 2795–2808.CrossRef
21.
Zurück zum Zitat Zhang, J., Hu, X., Ning, Z., Ngai, E., Zhou, L., Wei, J., et al. (2018). Energy-latency tradeoff for energy-aware offloading in mobile edge computing networks. IEEE Internet of Things Journal, 5(4), 2633–2645.CrossRef Zhang, J., Hu, X., Ning, Z., Ngai, E., Zhou, L., Wei, J., et al. (2018). Energy-latency tradeoff for energy-aware offloading in mobile edge computing networks. IEEE Internet of Things Journal, 5(4), 2633–2645.CrossRef
22.
Zurück zum Zitat Dinh, T. Q., Tang, J., La, Q. D., & Quek, T. Q. S. (2017). Offloading in mobile edge computing: Task allocation and computational frequency scaling. IEEE Transactions on Communications, 65(8), 3571–3584. Dinh, T. Q., Tang, J., La, Q. D., & Quek, T. Q. S. (2017). Offloading in mobile edge computing: Task allocation and computational frequency scaling. IEEE Transactions on Communications, 65(8), 3571–3584.
23.
Zurück zum Zitat Hao, Y., Chen, M., Hu, L., Hossain, M. S., & Ghoniem, A. (2018). Energy efficient task caching and offloading for mobile edge computing. IEEE Access, 6, 11365–11373.CrossRef Hao, Y., Chen, M., Hu, L., Hossain, M. S., & Ghoniem, A. (2018). Energy efficient task caching and offloading for mobile edge computing. IEEE Access, 6, 11365–11373.CrossRef
24.
Zurück zum Zitat Ren, J., Yu, G., Ca, Y., & He, Y. (2018). Latency optimization for resource allocation in mobile-edge computation offloading. IEEE Transactions on Wireless Communications, 17(8), 5506–5519.CrossRef Ren, J., Yu, G., Ca, Y., & He, Y. (2018). Latency optimization for resource allocation in mobile-edge computation offloading. IEEE Transactions on Wireless Communications, 17(8), 5506–5519.CrossRef
25.
Zurück zum Zitat Wang, Y., Sheng, M., Wang, X., Wang, L., & Li, J. (2016). Mobile-edge computing: Partial computation offloading using dynamic voltage scaling. IEEE Transactions on Communications, 64(10), 4268–4282. Wang, Y., Sheng, M., Wang, X., Wang, L., & Li, J. (2016). Mobile-edge computing: Partial computation offloading using dynamic voltage scaling. IEEE Transactions on Communications, 64(10), 4268–4282.
26.
Zurück zum Zitat Zhang, K., Mao, Y., Leng, S., Zhao, Q., Li, L., Peng, X., et al. (2016). Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks. IEEE Access, 4, 5896–5907.CrossRef Zhang, K., Mao, Y., Leng, S., Zhao, Q., Li, L., Peng, X., et al. (2016). Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks. IEEE Access, 4, 5896–5907.CrossRef
27.
Zurück zum Zitat Xiao, M., Lin, C., Han, Z., & Liu, J. (2018). Energy-aware computation offloading of IoT sensors in cloudlet-based mobile edge computing. Sensors, 18(6), 1945.CrossRef Xiao, M., Lin, C., Han, Z., & Liu, J. (2018). Energy-aware computation offloading of IoT sensors in cloudlet-based mobile edge computing. Sensors, 18(6), 1945.CrossRef
31.
Zurück zum Zitat Kosta, S., Aucinas, A., Hui, P., Mortier, R., & Zhang, X. (2012). ThinkAir: Dynamic resource allocation and parallel execution in the cloud for mobile code offloading. In Proceedings IEEE Infocom (pp. 945–953). Kosta, S., Aucinas, A., Hui, P., Mortier, R., & Zhang, X. (2012). ThinkAir: Dynamic resource allocation and parallel execution in the cloud for mobile code offloading. In Proceedings IEEE Infocom (pp. 945–953).
32.
Zurück zum Zitat Burd, T. D., & Brodersen, R. W. (1996). Processor design for portable systems. Journal of VLSI Signal Processing Systems for Signal Image & Video Technology, 13(2–3), 203–221.CrossRef Burd, T. D., & Brodersen, R. W. (1996). Processor design for portable systems. Journal of VLSI Signal Processing Systems for Signal Image & Video Technology, 13(2–3), 203–221.CrossRef
33.
34.
Zurück zum Zitat Labbé, M., Laporte, G., & Martello, S. (2003). Upper bounds and algorithms for the maximum cardinality bin packing problem. European Journal of Operational Research, 149(3), 490–498.MathSciNetCrossRef Labbé, M., Laporte, G., & Martello, S. (2003). Upper bounds and algorithms for the maximum cardinality bin packing problem. European Journal of Operational Research, 149(3), 490–498.MathSciNetCrossRef
35.
Zurück zum Zitat Johnson, S. M. (2006). Optimal two- and three-stage production schedules with setup times included. Naval Research Logistics Quarterly, 1(1), 61–68.CrossRef Johnson, S. M. (2006). Optimal two- and three-stage production schedules with setup times included. Naval Research Logistics Quarterly, 1(1), 61–68.CrossRef
36.
Zurück zum Zitat Sarkar, T. K., Burintramart, S., Yilmazer, N., Hwang, S., Zhang, Y., De, A., et al. (2006). A discussion about some of the principles/practices of wireless communication under a Maxwellian framework. IEEE Transactions on Antennas and Propagation, 54(12), 3727–3745. https://doi.org/10.1109/TAP.2006.886522.CrossRef Sarkar, T. K., Burintramart, S., Yilmazer, N., Hwang, S., Zhang, Y., De, A., et al. (2006). A discussion about some of the principles/practices of wireless communication under a Maxwellian framework. IEEE Transactions on Antennas and Propagation, 54(12), 3727–3745. https://​doi.​org/​10.​1109/​TAP.​2006.​886522.CrossRef
Metadaten
Titel
Energy-efficient computation offloading strategy with tasks scheduling in edge computing
verfasst von
Yue Zhang
Jingqi Fu
Publikationsdatum
07.10.2020
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 1/2021
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02474-1

Weitere Artikel der Ausgabe 1/2021

Wireless Networks 1/2021 Zur Ausgabe

Neuer Inhalt