Skip to main content
Erschienen in: Wireless Networks 6/2022

25.04.2022 | Original Paper

EDCCS: effective deterministic clustering scheme based compressive sensing to enhance IoT based WSNs

verfasst von: Ahmed Aziz, Walid Osamy, Oruba Alfawaz, Ahmed M. Khedr

Erschienen in: Wireless Networks | Ausgabe 6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The problem of Data acquisition in large distributed Wireless Sensor Networks (WSNs) scale is a hindrance in the growth of the Internet of Things (IoT). Recently, the combination of compressive sensing (CS) and routing techniques has attracted great interest from researchers. An open question of this approach is how to effectively integrate these technologies for specific tasks. The objective of this paper is two parts. First, we propose an effective deterministic clustering scheme based CS technique (EDCCS) for data collection in IoT based homogeneous and heterogeneous WSN to deal with the data acquisition problem, reduce the consumption of energy and increase the lifetime of network. Second, we propose random matching pursuit (RMP) as an effective CS reconstruction algorithm to improve the recovery process by reducing the error average at the base station (BS). The simulation results show that our proposed novel EDCCS scheme reduces at least 60% of the average power consumption and increases the network lifetime at least 1.3 times of the other schemes in homogeneous network while, it increases the network lifetime and residual energy by 1.9 times and 1.3 times respectively, compared to the other schemes in heterogeneous network. Also, our proposed RMP algorithm reduces the error average of reconstruction at least 35% compared to other reconstruction algorithms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Oberländer, A. M., Röglinger, M., Rosemann, M., & Kees, A. A. (2017). Conceptualizing business-to-thing interactions-A sociomaterial perspective on the Internet of Things. European Journal of Information Systems, 27, 1–17. Oberländer, A. M., Röglinger, M., Rosemann, M., & Kees, A. A. (2017). Conceptualizing business-to-thing interactions-A sociomaterial perspective on the Internet of Things. European Journal of Information Systems, 27, 1–17.
2.
Zurück zum Zitat Krishnamurthi, R., Kumar, A., Gopinathan, D., Nayyar, A., & Qureshi, B. (2020). An overview of IoT sensor data processing, fusion, and analysis techniques. Sensors, 20(21), 6076.CrossRef Krishnamurthi, R., Kumar, A., Gopinathan, D., Nayyar, A., & Qureshi, B. (2020). An overview of IoT sensor data processing, fusion, and analysis techniques. Sensors, 20(21), 6076.CrossRef
3.
Zurück zum Zitat Xu, L. (2011). Enterprise systems: State-of-the-art and future trends. IEEE transactions on industrial informatics 7(4), 630640. Xu, L. (2011). Enterprise systems: State-of-the-art and future trends. IEEE transactions on industrial informatics 7(4), 630640.
4.
Zurück zum Zitat Ejaz, A., Yaqoob, I., Gani, A., Imran, M., Guizani, M., Rabbat, M., & Nowak, R. (2016). Internet-of-things-based smart environments: state of the art, taxonomy, and open research challenges. IEEE Wireless Communications, 23, 10–16.CrossRef Ejaz, A., Yaqoob, I., Gani, A., Imran, M., Guizani, M., Rabbat, M., & Nowak, R. (2016). Internet-of-things-based smart environments: state of the art, taxonomy, and open research challenges. IEEE Wireless Communications, 23, 10–16.CrossRef
5.
Zurück zum Zitat Zheng, J., Simplot-Ryl, D., Bisdikian, C., & Mouftah, H. T. (2011). The internet of things. IEEE Communications Magazine, 49(11), 3031.CrossRef Zheng, J., Simplot-Ryl, D., Bisdikian, C., & Mouftah, H. T. (2011). The internet of things. IEEE Communications Magazine, 49(11), 3031.CrossRef
6.
Zurück zum Zitat Palopoli, L., Passerone, R., & Rizano, T. (2011). Scalable of- fline optimization of industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 7(2), 328329.CrossRef Palopoli, L., Passerone, R., & Rizano, T. (2011). Scalable of- fline optimization of industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 7(2), 328329.CrossRef
7.
Zurück zum Zitat Balaji, B. S., Raja, P. V., Nayyar, A., Sanjeevikumar, P., & Pandiyan, S. (2020). Enhancement of security and handling the inconspicuousness in IoT using a simple size extensible blockchain. Energies, 13(7), 1795.CrossRef Balaji, B. S., Raja, P. V., Nayyar, A., Sanjeevikumar, P., & Pandiyan, S. (2020). Enhancement of security and handling the inconspicuousness in IoT using a simple size extensible blockchain. Energies, 13(7), 1795.CrossRef
8.
Zurück zum Zitat Haupt, J., Bajwa, W. U., Rabbat, M., & Nowak, R. (2008). Compressed sensing for networked data: A different approach to decentralized compression. IEEE Signal Processing Magazine, 25(2), 92101.CrossRef Haupt, J., Bajwa, W. U., Rabbat, M., & Nowak, R. (2008). Compressed sensing for networked data: A different approach to decentralized compression. IEEE Signal Processing Magazine, 25(2), 92101.CrossRef
9.
Zurück zum Zitat Ulusoy, A., Gurbuz, O., & Onat, A. (2011). Wireless model- based predictive networked control system over cooperative wireless network. IEEE Transactions on Industrial Informatics, 7(1), 4151.CrossRef Ulusoy, A., Gurbuz, O., & Onat, A. (2011). Wireless model- based predictive networked control system over cooperative wireless network. IEEE Transactions on Industrial Informatics, 7(1), 4151.CrossRef
10.
Zurück zum Zitat Al-Kashoash, H. A., Kharrufa, H., Al-Nidawi, Y., & Kemp, A. H. (2018). Congestion control in wireless sensor and 6LoWPAN networks: toward the Internet of Things. Wireless Networks, 25, 1–30. Al-Kashoash, H. A., Kharrufa, H., Al-Nidawi, Y., & Kemp, A. H. (2018). Congestion control in wireless sensor and 6LoWPAN networks: toward the Internet of Things. Wireless Networks, 25, 1–30.
11.
Zurück zum Zitat Rahmani, A. M., Gia, T. N., Negash, B., Anzanpour, A., Azimi, I., Jiang, M., & Liljeberg, P. (2018). Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: A fog computing approach. Future Generation Computer Systems, 78, 641–658.CrossRef Rahmani, A. M., Gia, T. N., Negash, B., Anzanpour, A., Azimi, I., Jiang, M., & Liljeberg, P. (2018). Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: A fog computing approach. Future Generation Computer Systems, 78, 641–658.CrossRef
12.
Zurück zum Zitat Dhumane, A. V., & Prasad, R. S. (2019). Multi-objective fractional gravitational search algorithm for energy efficient routing in IoT. Wireless Networks, 25(1), 399–413.CrossRef Dhumane, A. V., & Prasad, R. S. (2019). Multi-objective fractional gravitational search algorithm for energy efficient routing in IoT. Wireless Networks, 25(1), 399–413.CrossRef
13.
Zurück zum Zitat Palopoli, L., Passerone, R., & Rizano, T. (2011). Scalable offline optimization of industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 7(2), 328329.CrossRef Palopoli, L., Passerone, R., & Rizano, T. (2011). Scalable offline optimization of industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 7(2), 328329.CrossRef
14.
Zurück zum Zitat Li, S., Xu, L., & Wang, X. (2013). Compressed sensing signal and data acquisition in wireless sensor networks and Internet of things. IEEE Transactions on Industrial Informatics, 9(4), 2177–2186.CrossRef Li, S., Xu, L., & Wang, X. (2013). Compressed sensing signal and data acquisition in wireless sensor networks and Internet of things. IEEE Transactions on Industrial Informatics, 9(4), 2177–2186.CrossRef
15.
Zurück zum Zitat Kavitha, M., & Geetha, B. G. (2017). An efficient city energy management system with secure routing communication using WSN. Cluster Computing, 22, 1–12. Kavitha, M., & Geetha, B. G. (2017). An efficient city energy management system with secure routing communication using WSN. Cluster Computing, 22, 1–12.
16.
Zurück zum Zitat Candes, E., & Wakin, M. (2008). An introduction to compressive sampling. IEEE Signal Processing Magazine, 25(2), 21–30.CrossRef Candes, E., & Wakin, M. (2008). An introduction to compressive sampling. IEEE Signal Processing Magazine, 25(2), 21–30.CrossRef
17.
Zurück zum Zitat Baraniuk, R. (2007). Compressive sensing [Lecture Notes]. IEEE Signal Processing Magazine, 24(4), 118–121.CrossRef Baraniuk, R. (2007). Compressive sensing [Lecture Notes]. IEEE Signal Processing Magazine, 24(4), 118–121.CrossRef
18.
Zurück zum Zitat Haupt, J., Bajwa, W., Rabbat, M., & Nowak, R. (2008). Compressed sensing for networked data. IEEE Signal Processing Magazine, 25(2), 92–101.CrossRef Haupt, J., Bajwa, W., Rabbat, M., & Nowak, R. (2008). Compressed sensing for networked data. IEEE Signal Processing Magazine, 25(2), 92–101.CrossRef
19.
Zurück zum Zitat Luo, J., Xiang, L., Rosenberg, C. (2010). Does compressed sensing improve the throughput of wireless sensor networks?. In 2010 IEEE International Conference on Communications (pp. 1-6). IEEE. Luo, J., Xiang, L., Rosenberg, C. (2010). Does compressed sensing improve the throughput of wireless sensor networks?. In 2010 IEEE International Conference on Communications (pp. 1-6). IEEE.
20.
Zurück zum Zitat Xiang, L., Luo, J., & Vasilakos, A. (2011). Compressed data aggregation for energy efficient wireless sensor networks. In 2011 8th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (pp. 46-54). IEEE. Xiang, L., Luo, J., & Vasilakos, A. (2011). Compressed data aggregation for energy efficient wireless sensor networks. In 2011 8th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (pp. 46-54). IEEE.
21.
Zurück zum Zitat Tsai, T., Lan, W., Liu, C., & Sun, M. (2013). Distributed compressive data aggregation in large-scale wireless sensor networks. Journal of Advances in Computer Networks, 1, 294. Tsai, T., Lan, W., Liu, C., & Sun, M. (2013). Distributed compressive data aggregation in large-scale wireless sensor networks. Journal of Advances in Computer Networks, 1, 294.
22.
Zurück zum Zitat Zhang, C., Zhang, X., Li, O., Yang, Y., & Liu, G. (2017). Dynamic clustering and compressive data gathering algorithm for energy-efficient wireless sensor networks. International Journal of Distributed Sensor Networks, 13(10), 1550147717738905.CrossRef Zhang, C., Zhang, X., Li, O., Yang, Y., & Liu, G. (2017). Dynamic clustering and compressive data gathering algorithm for energy-efficient wireless sensor networks. International Journal of Distributed Sensor Networks, 13(10), 1550147717738905.CrossRef
23.
Zurück zum Zitat Osamy, W., Khedr, A. M., Aziza, A., & El-Sawya, A. (2018). Cluster-tree routing schemefor data gathering in periodic monitoring applications. IEEE Access, 6, 77372–77387.CrossRef Osamy, W., Khedr, A. M., Aziza, A., & El-Sawya, A. (2018). Cluster-tree routing schemefor data gathering in periodic monitoring applications. IEEE Access, 6, 77372–77387.CrossRef
24.
Zurück zum Zitat Aziz, A., Singh, K., Osamy, W., & Khedr, A. M. (2019). Effective algorithm for optimizing compressive sensing in IoT and periodic monitoring applications. Journal of Network and Computer Applications, 126(15), 12–28.CrossRef Aziz, A., Singh, K., Osamy, W., & Khedr, A. M. (2019). Effective algorithm for optimizing compressive sensing in IoT and periodic monitoring applications. Journal of Network and Computer Applications, 126(15), 12–28.CrossRef
25.
Zurück zum Zitat Omar, D., & Khedr, A. M. (2019). Prolonging stability period of wireless sensor networks using compressive sensing. International Journal of Communication Networks and Information Security (IJCNIS), 11, 6. Omar, D., & Khedr, A. M. (2019). Prolonging stability period of wireless sensor networks using compressive sensing. International Journal of Communication Networks and Information Security (IJCNIS), 11, 6.
26.
Zurück zum Zitat Omar, D. M., & Khedr, A. M. (2018). ERPLBC: energy efficient routing protocol for load balanced clustering in wireless sensor networks. Ad Hoc & Sensor Wireless Networks, 42, 145–169. Omar, D. M., & Khedr, A. M. (2018). ERPLBC: energy efficient routing protocol for load balanced clustering in wireless sensor networks. Ad Hoc & Sensor Wireless Networks, 42, 145–169.
27.
Zurück zum Zitat Omar, D. M., Khedr, A. M., & Agrawal, D. P. (2017). Optimized clustering protocol for balancing energy in wireless sensor networks. International Journal of Communication Networks and Information Security (IJCNIS), 9(3), 367–375. Omar, D. M., Khedr, A. M., & Agrawal, D. P. (2017). Optimized clustering protocol for balancing energy in wireless sensor networks. International Journal of Communication Networks and Information Security (IJCNIS), 9(3), 367–375.
28.
Zurück zum Zitat Khedr, A. M., & Omar, D. M. (2015). SEP-CS: effective routing protocol for heterogeneous wireless sensor networks. Ad Hoc & Sensor Wireless Networks, 26, 211–232. Khedr, A. M., & Omar, D. M. (2015). SEP-CS: effective routing protocol for heterogeneous wireless sensor networks. Ad Hoc & Sensor Wireless Networks, 26, 211–232.
30.
Zurück zum Zitat Ali, S., & Refaay, S. (2011). Chain-chain based routing protocol. International Journal of Computer Science Issues, 8, 694–0814. Ali, S., & Refaay, S. (2011). Chain-chain based routing protocol. International Journal of Computer Science Issues, 8, 694–0814.
31.
Zurück zum Zitat Xie, R., & Jia, X. (2014). Transmission-efficient clustering method for wireless sensor networks using compressive sensing. IEEE Transactions on Parallel and Distributed Systems, 25(3), 806815. Xie, R., & Jia, X. (2014). Transmission-efficient clustering method for wireless sensor networks using compressive sensing. IEEE Transactions on Parallel and Distributed Systems, 25(3), 806815.
32.
Zurück zum Zitat Singh, S., Chand, S., Kumar, R., Malik, A., & Kumar, B. (2016). NEECP: Novel energy-efficient clustering protocol for prolonging lifetime of WSNs. IET Wireless Sensor Systems, 6(5), 151–157.CrossRef Singh, S., Chand, S., Kumar, R., Malik, A., & Kumar, B. (2016). NEECP: Novel energy-efficient clustering protocol for prolonging lifetime of WSNs. IET Wireless Sensor Systems, 6(5), 151–157.CrossRef
33.
Zurück zum Zitat Heinzelman, W., Chandrakasan, A., Balakrishnan, H.(2000) Energy efficient communication protocol for wireless microsensor networks, In: Proceedings of the 33rd Annual Hawaii International Conference, pp. 3005–3014 Heinzelman, W., Chandrakasan, A., Balakrishnan, H.(2000) Energy efficient communication protocol for wireless microsensor networks, In: Proceedings of the 33rd Annual Hawaii International Conference, pp. 3005–3014
34.
Zurück zum Zitat Aziz, A., Salim, A., Osamy, W. (2013). Adaptive and efficient compressive sensing based technique for routing in wire- less sensor networks, In Proceedings, INTHITEN (IoT and its Enablers) Conference, pp. 3-4, Aziz, A., Salim, A., Osamy, W. (2013). Adaptive and efficient compressive sensing based technique for routing in wire- less sensor networks, In Proceedings, INTHITEN (IoT and its Enablers) Conference, pp. 3-4,
35.
Zurück zum Zitat Aderohunmu F.A., Deng J.D., Purvis M.K., (2011). A deterministic energy-efficient clustering protocol for wireless sensor networks, In: Proceedings of Seventh IEEE International Conference on Intelligent Sensors, Sensor Networks and Information Processing, pp. 341–346. Aderohunmu F.A., Deng J.D., Purvis M.K., (2011). A deterministic energy-efficient clustering protocol for wireless sensor networks, In: Proceedings of Seventh IEEE International Conference on Intelligent Sensors, Sensor Networks and Information Processing, pp. 341–346.
36.
Zurück zum Zitat Salim, A., & Osamy, W. (2015). Distributed multi chain compressive sensing based routing algorithm for wireless sensor networks. Wireless Networks, 21, 1379–1390.CrossRef Salim, A., & Osamy, W. (2015). Distributed multi chain compressive sensing based routing algorithm for wireless sensor networks. Wireless Networks, 21, 1379–1390.CrossRef
37.
Zurück zum Zitat Smaragdakis, G., Matta, I., & Bestavros, A. (2004). SEP: A stable election protocol for clustered heterogeneous wireless sensor networks, In Proceeding of the International Workshop on SANPA, Smaragdakis, G., Matta, I., & Bestavros, A. (2004). SEP: A stable election protocol for clustered heterogeneous wireless sensor networks, In Proceeding of the International Workshop on SANPA,
38.
Zurück zum Zitat Al-Zubaidi, A. S., Ariffin, A. A., & Al-Qadhi, A. K. (2018). Enhancing the stability of the improved-LEACH routing protocol for WSNs. Journal of ICT Research & Applications, 12(1), 1–13.CrossRef Al-Zubaidi, A. S., Ariffin, A. A., & Al-Qadhi, A. K. (2018). Enhancing the stability of the improved-LEACH routing protocol for WSNs. Journal of ICT Research & Applications, 12(1), 1–13.CrossRef
39.
Zurück zum Zitat Smaragdakis, G., Matta, I., & Bestavros, A. (2004) SEP: A Stable ElectionProtocol for clustered heterogeneous wireless sensor networks, In Proceeding of the International Workshop on SANPA, Smaragdakis, G., Matta, I., & Bestavros, A. (2004) SEP: A Stable ElectionProtocol for clustered heterogeneous wireless sensor networks, In Proceeding of the International Workshop on SANPA,
40.
Zurück zum Zitat Mittal, N., Singh, U., & Sohi, B. Singh. (2017). A stable energy efficientclustering protocol for wireless sensor networks. Wireless Networks, 23, 809–1821.CrossRef Mittal, N., Singh, U., & Sohi, B. Singh. (2017). A stable energy efficientclustering protocol for wireless sensor networks. Wireless Networks, 23, 809–1821.CrossRef
41.
Zurück zum Zitat Kumar, S., Kant, S., & Kumar, A. (2015). Enhanced threshold sensitive stable election protocol for heterogeneous wireless sensor network. Wireless Pers Communication, 85, 2643–2656.CrossRef Kumar, S., Kant, S., & Kumar, A. (2015). Enhanced threshold sensitive stable election protocol for heterogeneous wireless sensor network. Wireless Pers Communication, 85, 2643–2656.CrossRef
42.
Zurück zum Zitat Luo, C., Wu, F., Sun, J., et al. (2013). An efficient compressive data gathering routing scheme for large-scale wireless sensor networks. Computer Electronical Engineering, 39(6), 19351946. Luo, C., Wu, F., Sun, J., et al. (2013). An efficient compressive data gathering routing scheme for large-scale wireless sensor networks. Computer Electronical Engineering, 39(6), 19351946.
43.
Zurück zum Zitat Haupt, J., Bajwa, W., & Rabbat, M. (2008). Compressed sensing for networked data. IEEE Signal Processing Magazine, 25(2), 92–101.CrossRef Haupt, J., Bajwa, W., & Rabbat, M. (2008). Compressed sensing for networked data. IEEE Signal Processing Magazine, 25(2), 92–101.CrossRef
44.
Zurück zum Zitat Chong, L., Feng, W., Jun, S., & Chang, C.(2009) Compressive data gathering for large-scale wireless sensor networks, In Proceedings of the 15th Annual International Conference on Mobile Computing and Networking, MobiCom ’09, pp. 145-156, New York, NY, USA, ACM. Chong, L., Feng, W., Jun, S., & Chang, C.(2009) Compressive data gathering for large-scale wireless sensor networks, In Proceedings of the 15th Annual International Conference on Mobile Computing and Networking, MobiCom ’09, pp. 145-156, New York, NY, USA, ACM.
45.
Zurück zum Zitat Duarte, M., Sarvotham, S., Wakin, M., Baron, D., & Baraniuk, R. (2005). jointsparsity models for distributed compressed sensing., Online Proceedings of the Workshop on Signal Processing with Adaptative Sparse Structured Representations (SPARS), Duarte, M., Sarvotham, S., Wakin, M., Baron, D., & Baraniuk, R. (2005). jointsparsity models for distributed compressed sensing., Online Proceedings of the Workshop on Signal Processing with Adaptative Sparse Structured Representations (SPARS),
46.
Zurück zum Zitat Jin, W., ShaoJie, T., Baocai, Y., & Yang, X. (2013). Data gathering in wireless sensor networks through intelligent compressive sensing. Digital Signal Processing, 23, 1539–1548.MathSciNet Jin, W., ShaoJie, T., Baocai, Y., & Yang, X. (2013). Data gathering in wireless sensor networks through intelligent compressive sensing. Digital Signal Processing, 23, 1539–1548.MathSciNet
47.
Zurück zum Zitat Luo, C., Wu, F., Sun, J., et al. (2010). Efficient measurement generation and pervasive sparsity for compressive data gathering. IEEE Transactions on Wireless Communications, 9(12), 37283738.CrossRef Luo, C., Wu, F., Sun, J., et al. (2010). Efficient measurement generation and pervasive sparsity for compressive data gathering. IEEE Transactions on Wireless Communications, 9(12), 37283738.CrossRef
48.
Zurück zum Zitat Nguyen, M. T., Teague, K. A., & Rahnavard, N. (2016). CCS: energy-efficient data collection in clustered wireless sensor networks utilizing block-wise compressive sensing. Computer Networks, 106, 171185. Nguyen, M. T., Teague, K. A., & Rahnavard, N. (2016). CCS: energy-efficient data collection in clustered wireless sensor networks utilizing block-wise compressive sensing. Computer Networks, 106, 171185.
49.
Zurück zum Zitat Nguyen MT (2013) Minimizing energy consumption in random walk routing for Wireless Sensor Networks utilizing compressed sensing, In Proceedings of the 2013 8th international conference on system of systems engineering, Maui, HI, 26, pp. 297301. New York: IEEE, June 2013. Nguyen MT (2013) Minimizing energy consumption in random walk routing for Wireless Sensor Networks utilizing compressed sensing, In Proceedings of the 2013 8th international conference on system of systems engineering, Maui, HI, 26, pp. 297301. New York: IEEE, June 2013.
50.
Zurück zum Zitat Khedr, A. M. (2015). Effective data acquisition protocol for multi-hop heterogeneous wireless sensor networks using compressive sensing. Algorithms, 8(4), 910–928.CrossRef Khedr, A. M. (2015). Effective data acquisition protocol for multi-hop heterogeneous wireless sensor networks using compressive sensing. Algorithms, 8(4), 910–928.CrossRef
51.
Zurück zum Zitat Yin, X., Neamtiu, I., Patil, S., & Andrews, S. T. (2020). Implementation-induced Inconsistency and Nondeterminism in Deterministic Clustering Algorithms. In 2020 IEEE 13th international conference on software testing, validation and verification (ICST) (pp. 231–242). IEEE. Yin, X., Neamtiu, I., Patil, S., & Andrews, S. T. (2020). Implementation-induced Inconsistency and Nondeterminism in Deterministic Clustering Algorithms. In 2020 IEEE 13th international conference on software testing, validation and verification (ICST) (pp. 231–242). IEEE.
52.
Zurück zum Zitat Wang, Q., Lin, D., Yang, P., & Zhang, Z. (2019). An energy-efficient compressive sensing-based clustering routing protocol for WSNs. IEEE Sensors Journal, 19(10), 3950–3960.CrossRef Wang, Q., Lin, D., Yang, P., & Zhang, Z. (2019). An energy-efficient compressive sensing-based clustering routing protocol for WSNs. IEEE Sensors Journal, 19(10), 3950–3960.CrossRef
53.
Zurück zum Zitat Osamy, W., Aziz, A., & Khedr, A. M. (2021). Deterministic clustering based compressive sensing scheme for fog-supported heterogeneous wireless sensor networks. Peer Journal Computer Science, 7, e463.CrossRef Osamy, W., Aziz, A., & Khedr, A. M. (2021). Deterministic clustering based compressive sensing scheme for fog-supported heterogeneous wireless sensor networks. Peer Journal Computer Science, 7, e463.CrossRef
54.
Zurück zum Zitat Tsiropoulou, E. E., Mitsis, G., & Papavassiliou, S. (2018). Interest-aware energy collection & resource management in machine to machine communications. Ad Hoc Networks, 68, 48–57.CrossRef Tsiropoulou, E. E., Mitsis, G., & Papavassiliou, S. (2018). Interest-aware energy collection & resource management in machine to machine communications. Ad Hoc Networks, 68, 48–57.CrossRef
55.
Zurück zum Zitat Aziz, A., Osamy, W., Khedr, A. M., & Salim, A. (2021). Chain-routing scheme with compressive sensing-based data acquisition for Internet of Things-based wireless sensor networks. IET Networks, 10(2), 43–58.CrossRef Aziz, A., Osamy, W., Khedr, A. M., & Salim, A. (2021). Chain-routing scheme with compressive sensing-based data acquisition for Internet of Things-based wireless sensor networks. IET Networks, 10(2), 43–58.CrossRef
56.
Zurück zum Zitat Venkataramani, R., Bresler, Y. (1998). Sub-nyquist sampling of multiband signals: perfect reconstruction and bounds on aliasing error, IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), pp. 12-15, Feb. Venkataramani, R., Bresler, Y. (1998). Sub-nyquist sampling of multiband signals: perfect reconstruction and bounds on aliasing error, IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), pp. 12-15, Feb.
57.
Zurück zum Zitat Aziz, A., Osamy, W., Khedr, A. M., & Salim, A. (2020). Iterative selection and correction based adaptive greedy algorithm for compressive sensing reconstruction. Journal of King Saud University-Computer and Information Sciences. Aziz, A., Osamy, W., Khedr, A. M., & Salim, A. (2020). Iterative selection and correction based adaptive greedy algorithm for compressive sensing reconstruction. Journal of King Saud University-Computer and Information Sciences.
58.
Zurück zum Zitat Triantafyllou, A., Sarigiannidis, P., & Lagkas, T. D. (2018). Network protocols, schemes, and mechanisms for internet of things (iot): Features, open challenges, and trends. Wireless communications and mobile computing, 2018. Triantafyllou, A., Sarigiannidis, P., & Lagkas, T. D. (2018). Network protocols, schemes, and mechanisms for internet of things (iot): Features, open challenges, and trends. Wireless communications and mobile computing, 2018.
59.
Zurück zum Zitat Tropp, J., & Gilber, A. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on information theory, 53(14), 4655–4666.MathSciNetMATHCrossRef Tropp, J., & Gilber, A. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on information theory, 53(14), 4655–4666.MathSciNetMATHCrossRef
60.
Zurück zum Zitat Dai, Wei, & MilenkovicOlgica. (2009). Dai, W., & Milenkovic, O. (2009). Subspace pursuit for compressive sensing signal reconstruction. IEEE transactions on Information Theory, 55(5), 2230–2249. Dai, Wei, & MilenkovicOlgica. (2009). Dai, W., & Milenkovic, O. (2009). Subspace pursuit for compressive sensing signal reconstruction. IEEE transactions on Information Theory, 55(5), 2230–2249.
61.
Zurück zum Zitat needell, D., & tropp, J. a. (2009). COSAMP: iterative signal re- covery from incomplete and inaccurate samples. Applied and computational harmonic analysis, 26(3), 301–321. needell, D., & tropp, J. a. (2009). COSAMP: iterative signal re- covery from incomplete and inaccurate samples. Applied and computational harmonic analysis, 26(3), 301–321.
62.
Zurück zum Zitat Burak, N., & Erdogan, H. (2013). Compressed sensing signal recovery via forward-backward pursuit. Digital Signal Processing, 23, 1539–1548.MathSciNetCrossRef Burak, N., & Erdogan, H. (2013). Compressed sensing signal recovery via forward-backward pursuit. Digital Signal Processing, 23, 1539–1548.MathSciNetCrossRef
63.
Zurück zum Zitat Aziz, A., Salim, A., & Osamy, W. (2014). Sparse signals reconstruction via adaptive iterative greedy algorithm. International Journal of Computer Applications, 90(17), 5–11.CrossRef Aziz, A., Salim, A., & Osamy, W. (2014). Sparse signals reconstruction via adaptive iterative greedy algorithm. International Journal of Computer Applications, 90(17), 5–11.CrossRef
64.
Zurück zum Zitat Heinzelman, WB. (2000). Application-specific protocol architectures for wireless networks. Diss. Massachusetts Institute of Technology. Heinzelman, WB. (2000). Application-specific protocol architectures for wireless networks. Diss. Massachusetts Institute of Technology.
Metadaten
Titel
EDCCS: effective deterministic clustering scheme based compressive sensing to enhance IoT based WSNs
verfasst von
Ahmed Aziz
Walid Osamy
Oruba Alfawaz
Ahmed M. Khedr
Publikationsdatum
25.04.2022
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 6/2022
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-022-02973-3

Weitere Artikel der Ausgabe 6/2022

Wireless Networks 6/2022 Zur Ausgabe

Neuer Inhalt