Skip to main content
Erschienen in: Wireless Personal Communications 3/2017

03.06.2017

A Cluster-Based Cooperative Spectrum Sensing Strategy to Maximize Achievable Throughput

verfasst von: Mehran Mashreghi, Bahman Abolhassani

Erschienen in: Wireless Personal Communications | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a novel cooperative spectrum sensing (CSS) strategy is proposed for cognitive radio networks (CRN) with imperfect reporting channels. This CSS strategy uses simultaneously four techniques to overcome undesirable effects of reporting channels, which are errors and overhead traffic. First, it uses an energy efficient clustering algorithm to maximize the CRN lifetime. Second, in each cluster, an incremental weighing fusion rule is used to improve the accuracy of local sensing performed by secondary users. Third, it selects more reliable improved decisions for sending to the fusion center, to decrease overhead traffic. Fourth, it employs a space–time block code to reduce the probability of errors in reporting channels. We determine the optimal settings of the proposed strategy, such as number of clusters, and their corresponding members by maximizing the achievable throughput of the CRN. Numerical and simulation results will prove the proposed CSS strategy yields the highest throughput for the CRN, while it guarantees the maximum lifetime of CRN, and maximum protection of primary users.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Akylidiz, I., Lo, B., & Balakrishan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication Journal, 4(1), 40–62.CrossRef Akylidiz, I., Lo, B., & Balakrishan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication Journal, 4(1), 40–62.CrossRef
2.
Zurück zum Zitat Lee, J. W. (2013). Cooperative spectrum sensing scheme over imperfect feedback channels. IEEE Communications Letters, 17(6), 1192–1195.CrossRef Lee, J. W. (2013). Cooperative spectrum sensing scheme over imperfect feedback channels. IEEE Communications Letters, 17(6), 1192–1195.CrossRef
3.
Zurück zum Zitat Chaudhari, S., Lund´en, J., Koivunen, V., & Poor, H. V. (2012). Cooperative sensing with imperfect reporting channels: Hard decisions or soft decisions? IEEE Transactions on Signal Processing, 60(1), 18–28.MathSciNetCrossRef Chaudhari, S., Lund´en, J., Koivunen, V., & Poor, H. V. (2012). Cooperative sensing with imperfect reporting channels: Hard decisions or soft decisions? IEEE Transactions on Signal Processing, 60(1), 18–28.MathSciNetCrossRef
4.
Zurück zum Zitat Zhang, W., & Letaief, K. (2008). Cooperative spectrum sensing with transmit and relay diversity in cognitive radio networks. IEEE Transactions on Wireless Communications, 7(12), 4761–4766.CrossRef Zhang, W., & Letaief, K. (2008). Cooperative spectrum sensing with transmit and relay diversity in cognitive radio networks. IEEE Transactions on Wireless Communications, 7(12), 4761–4766.CrossRef
5.
Zurück zum Zitat Mashreghi, M., & Abolhassani, B. (2010). Optimum number of secondary users and optimum fusion rule in cooperative spectrum sensing to maximize channel throughput. In Proceedings of international symposium on telecommunications, Tehran, Iran, pp. 1–6. Mashreghi, M., & Abolhassani, B. (2010). Optimum number of secondary users and optimum fusion rule in cooperative spectrum sensing to maximize channel throughput. In Proceedings of international symposium on telecommunications, Tehran, Iran, pp. 1–6.
6.
Zurück zum Zitat Ghasemi, A., & Sousa, E. (2007). Opportunistic spectrum access in fading channels through collaborative sensing. Journal of Communications, 2(2), 71–82.CrossRef Ghasemi, A., & Sousa, E. (2007). Opportunistic spectrum access in fading channels through collaborative sensing. Journal of Communications, 2(2), 71–82.CrossRef
7.
Zurück zum Zitat Khalid, L., & Anpalagan, A. (2014). Reliability-based decision fusion scheme for cooperative spectrum sensing. IET Communications, 8(14), 2423–2432.CrossRef Khalid, L., & Anpalagan, A. (2014). Reliability-based decision fusion scheme for cooperative spectrum sensing. IET Communications, 8(14), 2423–2432.CrossRef
8.
Zurück zum Zitat Ebrahimzadeh, A., & Najimi, M. (2015). Throughput improvement in energy-efficient cooperative spectrum sensing based on sensor selection. Wireless Personal Communication, 85(4), 2099–2114.CrossRef Ebrahimzadeh, A., & Najimi, M. (2015). Throughput improvement in energy-efficient cooperative spectrum sensing based on sensor selection. Wireless Personal Communication, 85(4), 2099–2114.CrossRef
9.
Zurück zum Zitat Zhang, T., & Tsang, D. H. K. (2015). Cooperative sensing scheduling for energy-efficient cognitive radio networks. IEEE Transactions on Vehicular Technology, 64(6), 2648–2662.CrossRef Zhang, T., & Tsang, D. H. K. (2015). Cooperative sensing scheduling for energy-efficient cognitive radio networks. IEEE Transactions on Vehicular Technology, 64(6), 2648–2662.CrossRef
10.
Zurück zum Zitat Reisi, N., Ahmadian, M., Jamali, V., & Salari, S. (2012). Cluster-based cooperative spectrum sensing over correlated log-normal channels with noise uncertainty in cognitive radio networks. IET Communication, 6(16), 2725–2733.CrossRef Reisi, N., Ahmadian, M., Jamali, V., & Salari, S. (2012). Cluster-based cooperative spectrum sensing over correlated log-normal channels with noise uncertainty in cognitive radio networks. IET Communication, 6(16), 2725–2733.CrossRef
11.
Zurück zum Zitat Wang, Y., Nie, G., Li, G., & Shi, C. (2013). Sensing-throughput tradeoff in cluster-based cooperative cognitive radio networks with a TDMA reporting frame structure. Wireless Personal Communication, 71(3), 1795–1818.CrossRef Wang, Y., Nie, G., Li, G., & Shi, C. (2013). Sensing-throughput tradeoff in cluster-based cooperative cognitive radio networks with a TDMA reporting frame structure. Wireless Personal Communication, 71(3), 1795–1818.CrossRef
12.
Zurück zum Zitat Mashreghi, M., & Abolhassani, B. (2015). Number of cooperative wireless nodes to achieve a desired BER. Wireless Personal Communication, 82(2), 1059–1083.CrossRef Mashreghi, M., & Abolhassani, B. (2015). Number of cooperative wireless nodes to achieve a desired BER. Wireless Personal Communication, 82(2), 1059–1083.CrossRef
13.
Zurück zum Zitat Peh, E. C., Liang, Y., Guan, Y. L., & Zeng, Y. (2010). Cooperative spectrum sensing in cognitive radio networks with weighted decision fusion schemes. IEEE Transactions on Wireless Communications, 9(12), 3838–3847.CrossRef Peh, E. C., Liang, Y., Guan, Y. L., & Zeng, Y. (2010). Cooperative spectrum sensing in cognitive radio networks with weighted decision fusion schemes. IEEE Transactions on Wireless Communications, 9(12), 3838–3847.CrossRef
14.
Zurück zum Zitat Niu, R., Chen, B., & Varshney, P. (2006). Fusion of decision transmitted over Rayleigh fading channels in wireless sensor networks. IEEE Transactions on Signal Processing, 54(3), 1018–1027.CrossRef Niu, R., Chen, B., & Varshney, P. (2006). Fusion of decision transmitted over Rayleigh fading channels in wireless sensor networks. IEEE Transactions on Signal Processing, 54(3), 1018–1027.CrossRef
15.
Zurück zum Zitat Zhang, W., Yang, Y., & Yeo, C. K. (2015). Cluster-based cooperative spectrum sensing assignment strategy for heterogeneous cognitive radio network. IEEE Transactions on Vehicular Technology, 64(6), 2637–2647.CrossRef Zhang, W., Yang, Y., & Yeo, C. K. (2015). Cluster-based cooperative spectrum sensing assignment strategy for heterogeneous cognitive radio network. IEEE Transactions on Vehicular Technology, 64(6), 2637–2647.CrossRef
16.
Zurück zum Zitat Bilim, M., Kapucu, N., & Develi, I. (2016). A closed-form approximate BEP expression for cooperative IDMA systems over multipath Nakagami-m fading channels. IEEE Communications Letters, 20(8), 1599–1602.CrossRef Bilim, M., Kapucu, N., & Develi, I. (2016). A closed-form approximate BEP expression for cooperative IDMA systems over multipath Nakagami-m fading channels. IEEE Communications Letters, 20(8), 1599–1602.CrossRef
17.
Zurück zum Zitat Anees, S., & Bhatnagar, M. R. (2015). Performance of an amplify-and-forward dual-hop asymmetric RF-FSO communication system. Journal of Optical Communications and Networking, 7(2), 124–135.CrossRef Anees, S., & Bhatnagar, M. R. (2015). Performance of an amplify-and-forward dual-hop asymmetric RF-FSO communication system. Journal of Optical Communications and Networking, 7(2), 124–135.CrossRef
18.
Zurück zum Zitat Kapucu, N., Bilim, M., & Develi, I. (2013). Outage probability analysis of dual-hop decode-and-forward relaying over mixed rayleigh and generalized gamma fading channels. Wireless Personal Communications, 71(3), 1117–1127.CrossRef Kapucu, N., Bilim, M., & Develi, I. (2013). Outage probability analysis of dual-hop decode-and-forward relaying over mixed rayleigh and generalized gamma fading channels. Wireless Personal Communications, 71(3), 1117–1127.CrossRef
19.
Zurück zum Zitat Anees, S., & Bhatnagar, M. R. (2015). Performance evaluation of decode-and-forward dual-hop asymmetric radio frequency-free space optical communication system. IET Optoelectronics, 9(5), 232–240.CrossRef Anees, S., & Bhatnagar, M. R. (2015). Performance evaluation of decode-and-forward dual-hop asymmetric radio frequency-free space optical communication system. IET Optoelectronics, 9(5), 232–240.CrossRef
20.
Zurück zum Zitat Kapucu, N., Bilim, M., & Develi, I. (2013). SER performance of amplify-and-forward cooperative diversity over asymmetric fading channels. Wireless Personal Communications, 73(2), 947–954.CrossRef Kapucu, N., Bilim, M., & Develi, I. (2013). SER performance of amplify-and-forward cooperative diversity over asymmetric fading channels. Wireless Personal Communications, 73(2), 947–954.CrossRef
21.
Zurück zum Zitat Ma, S., Yang, Y. L., & Sharif, H. (2011). Distributed MIMO technologies in cooperative wireless networks. IEEE Communications Magazine, 49(5), 78–82.CrossRef Ma, S., Yang, Y. L., & Sharif, H. (2011). Distributed MIMO technologies in cooperative wireless networks. IEEE Communications Magazine, 49(5), 78–82.CrossRef
22.
Zurück zum Zitat Lu, K., Fu, S., & Xia, X. G. (2005). Closed-form designs of complex orthogonal space-time block codes of rates (k + 1)/(2k) for 2k − 1 or 2k transmit antennas. IEEE Transactions on Information Theory, 51(12), 4340–4347.MathSciNetCrossRefMATH Lu, K., Fu, S., & Xia, X. G. (2005). Closed-form designs of complex orthogonal space-time block codes of rates (k + 1)/(2k) for 2k − 1 or 2k transmit antennas. IEEE Transactions on Information Theory, 51(12), 4340–4347.MathSciNetCrossRefMATH
Metadaten
Titel
A Cluster-Based Cooperative Spectrum Sensing Strategy to Maximize Achievable Throughput
verfasst von
Mehran Mashreghi
Bahman Abolhassani
Publikationsdatum
03.06.2017
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2017
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-017-4403-0

Weitere Artikel der Ausgabe 3/2017

Wireless Personal Communications 3/2017 Zur Ausgabe

Neuer Inhalt