Skip to main content
Erschienen in: Wireless Personal Communications 4/2018

06.04.2018

Energy Efficient Clustering Scheme (EECS) for Wireless Sensor Network with Mobile Sink

verfasst von: V. Saranya, S. Shankar, G. R. Kanagachidambaresan

Erschienen in: Wireless Personal Communications | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The participants in the Wireless Sensor Network (WSN) are highly resource constraint in nature. The clustering approach in the WSN supports a large-scale monitoring with ease to the user. The node near the sink depletes the energy, forming energy holes in the network. The mobility of the sink creates a major challenge in reliable and energy efficient data communication towards the sink. Hence, a new energy efficient routing protocol is needed to serve the use of networks with a mobile sink. The primary objective of the proposed work is to enhance the lifetime of the network and to increase the packet delivered to mobile sink in the network. The residual energy of the node, distance, and the data overhead are taken into account for selection of cluster head in this proposed Energy Efficient Clustering Scheme (EECS). The waiting time of the mobile sink is estimated. Based on the mobility model, the role of the sensor node is realized as finite state machine and the state transition is realized through Markov model. The proposed EECS algorithm is also been compared with Modified-Low Energy Adaptive Clustering Hierarchy (MOD-LEACH) and Gateway-based Energy-Aware multi-hop Routing protocol algorithms (M-GEAR). The proposed EECS algorithm outperforms the MOD-LEACH algorithm by 1.78 times in terms of lifetime and 1.103 times in terms of throughput. The EECS algorithm promotes unequal clustering by avoiding the energy hole and the HOT SPOT issues.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Elsevier Computer Networks, 38, 393–422.CrossRef Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Elsevier Computer Networks, 38, 393–422.CrossRef
2.
Zurück zum Zitat Li, X., Nayak, A., & Stojmenovic, I. (2010). Sink mobility in wireless sensor networks. In A. Nayak & I. Stojmenovic (Eds.), Wireless sensor and actuator networks. Hoboken: Wiley. Li, X., Nayak, A., & Stojmenovic, I. (2010). Sink mobility in wireless sensor networks. In A. Nayak & I. Stojmenovic (Eds.), Wireless sensor and actuator networks. Hoboken: Wiley.
3.
Zurück zum Zitat Khan, M. I., Gansterer, W. N., & Haring, G. (2012). Static vs. mobile sink: The influence of basic parameters on energy efficiency in wireless sensor networks. Computer Communications, 36, 965–978.CrossRef Khan, M. I., Gansterer, W. N., & Haring, G. (2012). Static vs. mobile sink: The influence of basic parameters on energy efficiency in wireless sensor networks. Computer Communications, 36, 965–978.CrossRef
4.
Zurück zum Zitat Hamida, E., & Chelius, G. (2008). Strategies for data dissemination to mobile sinks in wireless sensor networks. IEEE Wireless Communications, 15(6), 31–37.CrossRef Hamida, E., & Chelius, G. (2008). Strategies for data dissemination to mobile sinks in wireless sensor networks. IEEE Wireless Communications, 15(6), 31–37.CrossRef
5.
Zurück zum Zitat Yun, Y. S., & Xia, Y. (2010). Maximizing the lifetime of wireless sensor networks with mobile sink in delay-tolerant applications. IEEE Transactions on Mobile Computing, 9, 1308–1318.CrossRef Yun, Y. S., & Xia, Y. (2010). Maximizing the lifetime of wireless sensor networks with mobile sink in delay-tolerant applications. IEEE Transactions on Mobile Computing, 9, 1308–1318.CrossRef
6.
Zurück zum Zitat Khan, M. I., Gansterer, W. N., & Haring, G. (2007). Congestion avoidance and energy-efficient routing protocol for wireless sensor networks with a mobile sink. Journal of Networks, 2(6), 42–49.CrossRef Khan, M. I., Gansterer, W. N., & Haring, G. (2007). Congestion avoidance and energy-efficient routing protocol for wireless sensor networks with a mobile sink. Journal of Networks, 2(6), 42–49.CrossRef
7.
Zurück zum Zitat Basagni, S., Carosi, A., Melachrinoudis, E., Petrioli, C., & Wang, Z. M. (2008). Controlled sink mobility for prolonging wireless sensor networks lifetime. Journal of Wireless Networks, 14, 831–858.CrossRef Basagni, S., Carosi, A., Melachrinoudis, E., Petrioli, C., & Wang, Z. M. (2008). Controlled sink mobility for prolonging wireless sensor networks lifetime. Journal of Wireless Networks, 14, 831–858.CrossRef
8.
Zurück zum Zitat Zaki, G. F, et al. (2009). Energy balanced model for data gathering in wireless sensor networks with fixed and mobile sinks. In Proceedings of the 18th international conference on computer communications and networks (ICCCN’09), San Francisco, CA (pp. 1–6). Zaki, G. F, et al. (2009). Energy balanced model for data gathering in wireless sensor networks with fixed and mobile sinks. In Proceedings of the 18th international conference on computer communications and networks (ICCCN’09), San Francisco, CA (pp. 1–6).
9.
Zurück zum Zitat Vlajic, N., & Stevanovic, D. (2009). Sink mobility in wireless sensor networks: When theory meets reality. Princeton: SARNOFF ‘09 IEEE.CrossRef Vlajic, N., & Stevanovic, D. (2009). Sink mobility in wireless sensor networks: When theory meets reality. Princeton: SARNOFF ‘09 IEEE.CrossRef
10.
Zurück zum Zitat Jain, A. (2017). Traffic-aware channel access algorithm for cluster-based wireless sensor networks. Wireless Personal Communications, 96(1), 1595–1612.CrossRef Jain, A. (2017). Traffic-aware channel access algorithm for cluster-based wireless sensor networks. Wireless Personal Communications, 96(1), 1595–1612.CrossRef
11.
Zurück zum Zitat Komal, P., Nitesh, K., & Jana, P. K. (2016). Indegree-based path design for mobile sink in wireless sensor networks. In The IEEE Conference Proceedings of 3rd international conference on Recent Advances in Information Technology (RAIT). Komal, P., Nitesh, K., & Jana, P. K. (2016). Indegree-based path design for mobile sink in wireless sensor networks. In The IEEE Conference Proceedings of 3rd international conference on Recent Advances in Information Technology (RAIT).
12.
Zurück zum Zitat Mishra, M., Nitesh, K., & Jana, P. K. (2016). A delay-bound efficient path design algorithm for mobile sink in wireless sensor networks. In The IEEE conference Proceedings of 3rd international conference on Recent Advances in Information Technology (RAIT). Mishra, M., Nitesh, K., & Jana, P. K. (2016). A delay-bound efficient path design algorithm for mobile sink in wireless sensor networks. In The IEEE conference Proceedings of 3rd international conference on Recent Advances in Information Technology (RAIT).
13.
Zurück zum Zitat Pradeepa, K., & Duraisamy, S. (2016). Energy efficient positioning of mobile base stations to improve wireless sensor network lifetime. International Journal of Sensor Networks, 20(2), 92–103.CrossRef Pradeepa, K., & Duraisamy, S. (2016). Energy efficient positioning of mobile base stations to improve wireless sensor network lifetime. International Journal of Sensor Networks, 20(2), 92–103.CrossRef
14.
Zurück zum Zitat Kanagachidambaresan, G. R., & Chitra, A. (2015). Fail safe fault tolerant algorithm for wireless body sensor network. Wireless Personal Communications, 80(1), 247–260.CrossRef Kanagachidambaresan, G. R., & Chitra, A. (2015). Fail safe fault tolerant algorithm for wireless body sensor network. Wireless Personal Communications, 80(1), 247–260.CrossRef
15.
Zurück zum Zitat Sarma Dhulipala, V. R., Kanagachidambaresan, G. R., & Chandrasekaran, R. M. (2012). Lack of power avoidance: A fault classification based fault tolerant framework solution for lifetime enhancement and reliable communication in wireless sensor networks. Information Technology Journal, 11, 719–724.CrossRef Sarma Dhulipala, V. R., Kanagachidambaresan, G. R., & Chandrasekaran, R. M. (2012). Lack of power avoidance: A fault classification based fault tolerant framework solution for lifetime enhancement and reliable communication in wireless sensor networks. Information Technology Journal, 11, 719–724.CrossRef
16.
Zurück zum Zitat Senthil, M., Rajamani, V., & Kanagachidambaresan, G. R. (2014). BACHS-battery aware cluster head selection. Asian Network for Scientific Information, 7, 35–49. Senthil, M., Rajamani, V., & Kanagachidambaresan, G. R. (2014). BACHS-battery aware cluster head selection. Asian Network for Scientific Information, 7, 35–49.
17.
Zurück zum Zitat Mehrabi, A., & Kim, K. (2016). Maximizing data collection throughput on a path in energy harvesting sensor networks using a mobile sink. IEEE Transactions on Mobile Computing, 15, 690–704.CrossRef Mehrabi, A., & Kim, K. (2016). Maximizing data collection throughput on a path in energy harvesting sensor networks using a mobile sink. IEEE Transactions on Mobile Computing, 15, 690–704.CrossRef
18.
Zurück zum Zitat Ferng, H.-W., Tendean, R., & Kurniawan, A. (2012). Energy-efficient routing protocol for wireless sensor networks with static clustering and dynamic structure. Wireless Personal Communications, 65, 347–367.CrossRef Ferng, H.-W., Tendean, R., & Kurniawan, A. (2012). Energy-efficient routing protocol for wireless sensor networks with static clustering and dynamic structure. Wireless Personal Communications, 65, 347–367.CrossRef
19.
Zurück zum Zitat Wang, N.-C., Huang, Y.-F., Chen, J.-S., & Yeh, P.-C. (2007). Energy-aware data aggregation for grid-based wireless sensor networks with a mobile sink. Wireless Personal Communications, 43, 1539–1551.CrossRef Wang, N.-C., Huang, Y.-F., Chen, J.-S., & Yeh, P.-C. (2007). Energy-aware data aggregation for grid-based wireless sensor networks with a mobile sink. Wireless Personal Communications, 43, 1539–1551.CrossRef
20.
Zurück zum Zitat Lee, S., Choe, H., Park, B., Song, Y., & Kim, C. (2011). LUCA: An energy-efficient unequal clustering algorithm using location information for wireless sensor networks. Wireless Personal Communications, 56, 715–731.CrossRef Lee, S., Choe, H., Park, B., Song, Y., & Kim, C. (2011). LUCA: An energy-efficient unequal clustering algorithm using location information for wireless sensor networks. Wireless Personal Communications, 56, 715–731.CrossRef
21.
Zurück zum Zitat Kim, H.-Y., & Kim, J. (2017). An energy-efficient balancing scheme in wireless sensor networks. Wireless Personal Communications, 94, 17–29.CrossRef Kim, H.-Y., & Kim, J. (2017). An energy-efficient balancing scheme in wireless sensor networks. Wireless Personal Communications, 94, 17–29.CrossRef
22.
Zurück zum Zitat Mantri, D. S., Prasad, N. R., & Prasad, R. (2016). Mobility and heterogeneity aware cluster-based data aggregation for wireless sensor network. Wireless Personal Communications, 86, 975–993.CrossRef Mantri, D. S., Prasad, N. R., & Prasad, R. (2016). Mobility and heterogeneity aware cluster-based data aggregation for wireless sensor network. Wireless Personal Communications, 86, 975–993.CrossRef
23.
Zurück zum Zitat Zhang, D., Liu, S., Zhang, T., & Liang, Z. (2017). Novel unequal clustering routing protocol considering energy balancing based on network partition & distance for mobile education. Journal of Network and Computer Applications, 88, 1.CrossRef Zhang, D., Liu, S., Zhang, T., & Liang, Z. (2017). Novel unequal clustering routing protocol considering energy balancing based on network partition & distance for mobile education. Journal of Network and Computer Applications, 88, 1.CrossRef
24.
Zurück zum Zitat Akbar, M., Javaid, N., Imran, M., Amjad, N., Khan, M. I., & Guizani, M. (2016). Sink mobility aware energy-efficient network integrated super heterogeneous protocol for WSNs. EURASIP Journal of Wireless Communications and Networking, 2016, 66.CrossRef Akbar, M., Javaid, N., Imran, M., Amjad, N., Khan, M. I., & Guizani, M. (2016). Sink mobility aware energy-efficient network integrated super heterogeneous protocol for WSNs. EURASIP Journal of Wireless Communications and Networking, 2016, 66.CrossRef
25.
Zurück zum Zitat Wang, J., Cao, J., & Ji, S. (2017). Energy-efficient cluster-based dynamic routes adjustment approach for wireless sensor networks with mobile sink. The Journal of Supercomputing, 73(7), 3277–3290.CrossRef Wang, J., Cao, J., & Ji, S. (2017). Energy-efficient cluster-based dynamic routes adjustment approach for wireless sensor networks with mobile sink. The Journal of Supercomputing, 73(7), 3277–3290.CrossRef
Metadaten
Titel
Energy Efficient Clustering Scheme (EECS) for Wireless Sensor Network with Mobile Sink
verfasst von
V. Saranya
S. Shankar
G. R. Kanagachidambaresan
Publikationsdatum
06.04.2018
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2018
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-018-5653-1

Weitere Artikel der Ausgabe 4/2018

Wireless Personal Communications 4/2018 Zur Ausgabe

Neuer Inhalt