Skip to main content
Erschienen in: Wireless Personal Communications 4/2021

22.09.2020

A Self-powered Wearable Wireless Sensor System Powered by a Hybrid Energy Harvester for Healthcare Applications

verfasst von: Saeed Mohsen, Abdelhalim Zekry, Khaled Youssef, Mohamed Abouelatta

Erschienen in: Wireless Personal Communications | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a wearable medical sensor system is designed for long-term healthcare applications. This system is used for monitoring temperature, heartbeat, blood oxygen saturation (SpO2), and the acceleration of a human body in real-time. This system consists of a temperature sensor, a pulse oximeter sensor, an accelerometer sensor, a microcontroller unit, and a Bluetooth low energy module. Batteries are needed for supplying energy to this sensor system, but batteries have a limited lifetime. Therefore, a photovoltaic–thermoelectric hybrid energy harvester is developed to power a wearable medical sensor system. This harvester provides sufficient energy and increases the lifetime of the sensor system. The proposed hybrid energy harvester is composed of a flexible photovoltaic panel, a thermoelectric generator module, a DC–DC boost converter, and two super-capacitors. Experimentally, in active-sleep mode, the sensor system consumes an average power of 2.13 mW over 1 h and works without the energy harvester for 46 h. Finally, the experimental results illustrate the sustainable and long-term monitoring operation for the medical sensor system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Magno, M., Salvatore, G. A., Jokic, P., et al. (2019). Self-sustainable smart ring for long-term monitoring of blood oxygenation. IEEE Access, 7, 115400–115408.CrossRef Magno, M., Salvatore, G. A., Jokic, P., et al. (2019). Self-sustainable smart ring for long-term monitoring of blood oxygenation. IEEE Access, 7, 115400–115408.CrossRef
2.
Zurück zum Zitat Wu, T., Wu, F., Redoute, J.-M., et al. (2017). An autonomous wireless body area network implementation towards IoT connected. IEEE Access, 5, 11413–11422.CrossRef Wu, T., Wu, F., Redoute, J.-M., et al. (2017). An autonomous wireless body area network implementation towards IoT connected. IEEE Access, 5, 11413–11422.CrossRef
3.
Zurück zum Zitat Seeger, C., Van Laerhoven, K., & Buchmann, A. (2015). Myhealthassistant: An event-driven middleware for multiple medical applications on a smartphone-mediated body sensor network. IEEE Journal of Biomedical and Health Informatics, 19(2), 752–760.CrossRef Seeger, C., Van Laerhoven, K., & Buchmann, A. (2015). Myhealthassistant: An event-driven middleware for multiple medical applications on a smartphone-mediated body sensor network. IEEE Journal of Biomedical and Health Informatics, 19(2), 752–760.CrossRef
5.
Zurück zum Zitat Lapinski, M., Brum, C., Moxley, D., Berkson, E., Gill, T. J., Kepple, T., et al. (2019). A wide-range, wireless wearable inertial motion sensing system for capturing fast athletic biomechanics in overhead pitching. Sensors, 2019, 3637.CrossRef Lapinski, M., Brum, C., Moxley, D., Berkson, E., Gill, T. J., Kepple, T., et al. (2019). A wide-range, wireless wearable inertial motion sensing system for capturing fast athletic biomechanics in overhead pitching. Sensors, 2019, 3637.CrossRef
6.
Zurück zum Zitat Xie, L., Chen, P., Chen, S., Yu, K., & Sun, H. (2019). Low-cost and highly sensitive wearable sensor based on napkin for health monitoring. Sensors, 19, 3427.CrossRef Xie, L., Chen, P., Chen, S., Yu, K., & Sun, H. (2019). Low-cost and highly sensitive wearable sensor based on napkin for health monitoring. Sensors, 19, 3427.CrossRef
7.
Zurück zum Zitat Sadrawi, M., Lin, C. H., Lin, Y. T., Hsieh, Y., Kuo, C. C., Chien, J. C., et al. (2017). Arrhythmia evaluation in wearable ECG devices. Sensors, 17, 2445.CrossRef Sadrawi, M., Lin, C. H., Lin, Y. T., Hsieh, Y., Kuo, C. C., Chien, J. C., et al. (2017). Arrhythmia evaluation in wearable ECG devices. Sensors, 17, 2445.CrossRef
9.
Zurück zum Zitat Dionisi, A., Marioli, D., Sardini, E., et al. (2016). Autonomous wearable system for vital signs measurement with energy-harvesting module. IEEE Transactions on Instrumentation and Measurement, 65(6), 1423–1434.CrossRef Dionisi, A., Marioli, D., Sardini, E., et al. (2016). Autonomous wearable system for vital signs measurement with energy-harvesting module. IEEE Transactions on Instrumentation and Measurement, 65(6), 1423–1434.CrossRef
10.
Zurück zum Zitat Decker, A. (2014). Solar energy harvesting for autonomous field devices. IET Wireless Sensor Systems, 4(1), 1–8.CrossRef Decker, A. (2014). Solar energy harvesting for autonomous field devices. IET Wireless Sensor Systems, 4(1), 1–8.CrossRef
11.
Zurück zum Zitat Somov, A., Baranov, A., Savkin, A., et al. (2011). Development of wireless sensor network for combustible gas monitoring. Sensors and Actuators A: Physical, 171(2), 398–405.CrossRef Somov, A., Baranov, A., Savkin, A., et al. (2011). Development of wireless sensor network for combustible gas monitoring. Sensors and Actuators A: Physical, 171(2), 398–405.CrossRef
12.
Zurück zum Zitat Penella, M. T., & Gasulla, M. (2007). A review of commercial energy harvesters for autonomous sensors. In Proceedings of the international conference instrumentation and measurement technology (IMTC), Warsaw, Poland (pp. 1–5). Penella, M. T., & Gasulla, M. (2007). A review of commercial energy harvesters for autonomous sensors. In Proceedings of the international conference instrumentation and measurement technology (IMTC), Warsaw, Poland (pp. 1–5).
13.
Zurück zum Zitat Penella, M. T., Albesa, J., & Gasulla, M. (2009). Powering wireless sensor nodes: Primary batteries versus energy harvesting. In Proceedings of the international conference IEEE. Instrumentation and measurement technology (pp. 1625–1630). Singapore. Penella, M. T., Albesa, J., & Gasulla, M. (2009). Powering wireless sensor nodes: Primary batteries versus energy harvesting. In Proceedings of the international conference IEEE. Instrumentation and measurement technology (pp. 1625–1630). Singapore.
14.
Zurück zum Zitat Wu, T., Arefin, M. S., Redoute, J.-M., et al. (2016). A solar energy harvester with an improved MPPT circuit for wearable IoT. In International conference IEEE. Body area networks (Bodynets), Turin, Italy (pp. 166–170). Wu, T., Arefin, M. S., Redoute, J.-M., et al. (2016). A solar energy harvester with an improved MPPT circuit for wearable IoT. In International conference IEEE. Body area networks (Bodynets), Turin, Italy (pp. 166–170).
15.
Zurück zum Zitat Wu, T., Arefin, M. S., Shamilovitz, D., et al. (2016). A flexible and wearable energy harvester with an efficient and fast converging analog MPPT. In Conference IEEE. Biomedical circuits and systems (BioCAS), Shanghai, China, (pp. 336–339). Wu, T., Arefin, M. S., Shamilovitz, D., et al. (2016). A flexible and wearable energy harvester with an efficient and fast converging analog MPPT. In Conference IEEE. Biomedical circuits and systems (BioCAS), Shanghai, China, (pp. 336–339).
16.
Zurück zum Zitat Barker, S., Brennan, D., Wright, N. G., et al. (2011). Piezoelectric-powered wireless sensor system with regenerative transmit mode. IET Wireless Sensor Systems, 1(1), 31–38.CrossRef Barker, S., Brennan, D., Wright, N. G., et al. (2011). Piezoelectric-powered wireless sensor system with regenerative transmit mode. IET Wireless Sensor Systems, 1(1), 31–38.CrossRef
17.
Zurück zum Zitat Hamid, R., & Yuce, M. R. (2012). A wearable energy harvester unit using piezoelectric electromagnetic hybrid technique. Sensors and Actuators A: Physical, 257, 198–207.CrossRef Hamid, R., & Yuce, M. R. (2012). A wearable energy harvester unit using piezoelectric electromagnetic hybrid technique. Sensors and Actuators A: Physical, 257, 198–207.CrossRef
18.
Zurück zum Zitat Mohsen, S., & Zekry, A, et al. (2019). Analog control algorithm-based a photovoltaic energy harvesting system for low-power medical applications. In IEEE 14th international conference computer engineering and systems (ICCES), Cairo, Egypt (pp. 445–449). Mohsen, S., & Zekry, A, et al. (2019). Analog control algorithm-based a photovoltaic energy harvesting system for low-power medical applications. In IEEE 14th international conference computer engineering and systems (ICCES), Cairo, Egypt (pp. 445–449).
19.
Zurück zum Zitat Dias, P. C., Morais, F. J. O., de Morais Franca, M. B., et al. (2015). Autonomous multisensor system powered by a solar thermoelectric energy harvester with ultra-low power management circuit. IEEE Transactions on Instrumentation and Measurement, 64, 2918–2925.CrossRef Dias, P. C., Morais, F. J. O., de Morais Franca, M. B., et al. (2015). Autonomous multisensor system powered by a solar thermoelectric energy harvester with ultra-low power management circuit. IEEE Transactions on Instrumentation and Measurement, 64, 2918–2925.CrossRef
20.
Zurück zum Zitat Ce-Ce, A., & Xiao-Xia, S. (2015). Wireless sensor network in wind and solar hybrid street lamp application. In Conference Chinese control and decision (CCDC), Qingdao, China (pp. 3335–3339). Ce-Ce, A., & Xiao-Xia, S. (2015). Wireless sensor network in wind and solar hybrid street lamp application. In Conference Chinese control and decision (CCDC), Qingdao, China (pp. 3335–3339).
21.
Zurück zum Zitat Borges, L. M., Chávez-Santiago, R., Barroca, N., et al. (2015). Radio-frequency energy harvesting for wearable sensors. IET Healthcare Technology Letters, 2(1), 22–27.CrossRef Borges, L. M., Chávez-Santiago, R., Barroca, N., et al. (2015). Radio-frequency energy harvesting for wearable sensors. IET Healthcare Technology Letters, 2(1), 22–27.CrossRef
22.
Zurück zum Zitat Wijesundara, M., Tapparello, C., Gamage, A., Gokulan, Y., et al. (2016). Design of a kinetic energy harvester for elephant mounted wireless sensor nodes of jumboNet. In Conference IEEE. Global communications (GLOBECOM) (pp. 1–7). Wijesundara, M., Tapparello, C., Gamage, A., Gokulan, Y., et al. (2016). Design of a kinetic energy harvester for elephant mounted wireless sensor nodes of jumboNet. In Conference IEEE. Global communications (GLOBECOM) (pp. 1–7).
23.
Zurück zum Zitat Wu, F., Rudiger, C., & Yuce, M. R. (2017). Design and field test of an autonomous IoT WSN platform for environmental monitoring. In Conference international telecommunication networks and applications (ITNAC) (pp. 206–211). Wu, F., Rudiger, C., & Yuce, M. R. (2017). Design and field test of an autonomous IoT WSN platform for environmental monitoring. In Conference international telecommunication networks and applications (ITNAC) (pp. 206–211).
24.
Zurück zum Zitat Naveen, K. V., & Manjunath, S. S. (2011). A reliable ultracapacitor based solar energy harvesting system for wireless sensor network enabled intelligent buildings. In Proceedings of the international conference intelligent agent and multi-agent systems (IAMA), Chennai, India (pp. 20–25). Naveen, K. V., & Manjunath, S. S. (2011). A reliable ultracapacitor based solar energy harvesting system for wireless sensor network enabled intelligent buildings. In Proceedings of the international conference intelligent agent and multi-agent systems (IAMA), Chennai, India (pp. 20–25).
25.
Zurück zum Zitat Ingelrest, F., Barrenetxea, G., et al. (2010). SensorScope: Application-specific sensor network for environmental monitoring. ACM Transactions on Sensor Networks, 6(2), 1–32.CrossRef Ingelrest, F., Barrenetxea, G., et al. (2010). SensorScope: Application-specific sensor network for environmental monitoring. ACM Transactions on Sensor Networks, 6(2), 1–32.CrossRef
26.
Zurück zum Zitat Win, K. K., et al. (2008). Efficient solar energy harvester for wireless sensor nodes. In Design, automation and test in Europe (pp. 289–294). Win, K. K., et al. (2008). Efficient solar energy harvester for wireless sensor nodes. In Design, automation and test in Europe (pp. 289–294).
27.
Zurück zum Zitat Wu, T., et al. (2018). Subcutaneous solar energy harvesting for self-powered wireless implantable sensor systems. In 40th annual international conference of the IEEE engineering in medicine and biology society (EMBC) (pp. 4657–4660). Wu, T., et al. (2018). Subcutaneous solar energy harvesting for self-powered wireless implantable sensor systems. In 40th annual international conference of the IEEE engineering in medicine and biology society (EMBC) (pp. 4657–4660).
28.
Zurück zum Zitat Jokic, P., & Magno, M. (2017). Powering smart wearable systems with flexible solar energy harvesting, In IEEE international symposium on circuits and systems (ISCAS) (pp. 1–4). Jokic, P., & Magno, M. (2017). Powering smart wearable systems with flexible solar energy harvesting, In IEEE international symposium on circuits and systems (ISCAS) (pp. 1–4).
29.
Zurück zum Zitat Mohsen, S., et al. (2020). An autonomous wearable sensor node for long-term healthcare monitoring powered by a photovoltaic energy harvesting system. International Journal of Electronics and Telecommunications, 66(2), 267–272. Mohsen, S., et al. (2020). An autonomous wearable sensor node for long-term healthcare monitoring powered by a photovoltaic energy harvesting system. International Journal of Electronics and Telecommunications, 66(2), 267–272.
30.
Zurück zum Zitat Voss, T. J., et al. (2014). Flexibility of energy harvesting techniques for wearable medical devices. In 36th annual international conference of the IEEE engineering medicine and biology society (pp. 626–629). Voss, T. J., et al. (2014). Flexibility of energy harvesting techniques for wearable medical devices. In 36th annual international conference of the IEEE engineering medicine and biology society (pp. 626–629).
31.
Zurück zum Zitat Senivasan, S., Drieberg, M., Singh, B. S. M., et al. (2017). An MPPT micro solar energy harvester for wireless sensor networks. In International conference IEEE. Colloquium on signal processing and its applications (CSPA) (pp. 159–163). Senivasan, S., Drieberg, M., Singh, B. S. M., et al. (2017). An MPPT micro solar energy harvester for wireless sensor networks. In International conference IEEE. Colloquium on signal processing and its applications (CSPA) (pp. 159–163).
32.
Zurück zum Zitat Lim, J. C., Drieberg, M., Sebastian, P., et al. (2016). A simple solar energy harvester for wireless sensor networks. In 6th international conference. Intelligent and advanced systems (ICIAS) (pp. 1–6). Lim, J. C., Drieberg, M., Sebastian, P., et al. (2016). A simple solar energy harvester for wireless sensor networks. In 6th international conference. Intelligent and advanced systems (ICIAS) (pp. 1–6).
33.
Zurück zum Zitat Tran, T. V., & Chung, W.-Y. (2016). High-efficient energy harvester with flexible solar panel for a wearable sensor device. IEEE Sensors Journal, 16(24), 9021–9028.CrossRef Tran, T. V., & Chung, W.-Y. (2016). High-efficient energy harvester with flexible solar panel for a wearable sensor device. IEEE Sensors Journal, 16(24), 9021–9028.CrossRef
34.
Zurück zum Zitat Dai, M., Xiao, X., Chen, X., et al. (2016). A low-power and miniaturized electrocardiograph data collection system with smart textile electrodes for monitoring of cardiac function. Australasian Physical and Engineering Sciences in Medicine, 39, 1029–1040.CrossRef Dai, M., Xiao, X., Chen, X., et al. (2016). A low-power and miniaturized electrocardiograph data collection system with smart textile electrodes for monitoring of cardiac function. Australasian Physical and Engineering Sciences in Medicine, 39, 1029–1040.CrossRef
35.
Zurück zum Zitat Tan, Y. K., & Panda, S. K. (2010). Review of energy harvesting technologies for sustainable wireless sensor network. Sustainable Wireless Sensor Networks, 2010, 15–43. Tan, Y. K., & Panda, S. K. (2010). Review of energy harvesting technologies for sustainable wireless sensor network. Sustainable Wireless Sensor Networks, 2010, 15–43.
36.
Zurück zum Zitat Kang, K. (2012). Multi-source energy harvesting for wireless sensor nodes. Ph.D. dissertation. Royal Institute of Technology (KTH). Kang, K. (2012). Multi-source energy harvesting for wireless sensor nodes. Ph.D. dissertation. Royal Institute of Technology (KTH).
37.
Zurück zum Zitat Weddell, A. S., & Magno, M. (2018). Energy harvesting for smart city applications. In International symposium on power electronics, electrical drives, automation and motion (pp. 111–117). Weddell, A. S., & Magno, M. (2018). Energy harvesting for smart city applications. In International symposium on power electronics, electrical drives, automation and motion (pp. 111–117).
38.
Zurück zum Zitat Bhuvaneswari, P. T. V., Balakumar, R., Vaidehi, V., & Balamuralidhar, P. (2009). Solar energy harvesting for wireless sensor networks. In Conference computational intelligence, communication systems and networks (CICSYN) (pp. 57–61). Bhuvaneswari, P. T. V., Balakumar, R., Vaidehi, V., & Balamuralidhar, P. (2009). Solar energy harvesting for wireless sensor networks. In Conference computational intelligence, communication systems and networks (CICSYN) (pp. 57–61).
39.
Zurück zum Zitat Bader, S., & Oelmann, B. (2013). Short-term energy storage for wireless sensor networks using solar energy harvesting. In IEEE 10th international conference networking, sensing and control (ICNSC) (pp. 71–76). Bader, S., & Oelmann, B. (2013). Short-term energy storage for wireless sensor networks using solar energy harvesting. In IEEE 10th international conference networking, sensing and control (ICNSC) (pp. 71–76).
40.
Zurück zum Zitat Siddique, A. R. M., Mahmud, S., & Van Heyst, B. (2017). A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges. Renewable and Sustainable Energy Reviews, 2017, 730–744.CrossRef Siddique, A. R. M., Mahmud, S., & Van Heyst, B. (2017). A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges. Renewable and Sustainable Energy Reviews, 2017, 730–744.CrossRef
42.
Zurück zum Zitat Zekry, A., Shaker, A., & Salem, M. (2018). Solar cells and arrays: Principles, analysis, and design. In Advances in renewable energies and power technologies (pp. 3–56). Berlin: Elsevier. Zekry, A., Shaker, A., & Salem, M. (2018). Solar cells and arrays: Principles, analysis, and design. In Advances in renewable energies and power technologies (pp. 3–56). Berlin: Elsevier.
55.
Zurück zum Zitat Saquib, N., Papon, M. T. I., Ahmad, I., & Rahman, A. (2015). Measurement of heart rate using photoplethysmography. In IEEE international conference networking systems and security (NSysS) (pp. 1–6). Saquib, N., Papon, M. T. I., Ahmad, I., & Rahman, A. (2015). Measurement of heart rate using photoplethysmography. In IEEE international conference networking systems and security (NSysS) (pp. 1–6).
56.
Zurück zum Zitat Wei, Q., Park, H.-J., & Lee, J. H. (2019). Development of a wireless health monitoring system for measuring core body temperature from the back of the body. Journal of Healthcare Engineering, 2019, 1–8.CrossRef Wei, Q., Park, H.-J., & Lee, J. H. (2019). Development of a wireless health monitoring system for measuring core body temperature from the back of the body. Journal of Healthcare Engineering, 2019, 1–8.CrossRef
57.
Zurück zum Zitat Seifi, S., Khatony, A., Moradi, G., Abdi, A., & Najafi, F. (2018). Accuracy of pulse oximetry in detection of oxygen saturation in patients admitted to the intensive care unit of heart surgery: Comparison of finger, toe, forehead and earlobe probes. PMC Nursing, 2018, 1–7. Seifi, S., Khatony, A., Moradi, G., Abdi, A., & Najafi, F. (2018). Accuracy of pulse oximetry in detection of oxygen saturation in patients admitted to the intensive care unit of heart surgery: Comparison of finger, toe, forehead and earlobe probes. PMC Nursing, 2018, 1–7.
Metadaten
Titel
A Self-powered Wearable Wireless Sensor System Powered by a Hybrid Energy Harvester for Healthcare Applications
verfasst von
Saeed Mohsen
Abdelhalim Zekry
Khaled Youssef
Mohamed Abouelatta
Publikationsdatum
22.09.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07840-y

Weitere Artikel der Ausgabe 4/2021

Wireless Personal Communications 4/2021 Zur Ausgabe

Neuer Inhalt