Skip to main content
Erschienen in: Wireless Personal Communications 4/2021

17.02.2021

CBPR: A Cluster-Based Backpressure Routing for the Internet of Things

verfasst von: R. Maheswar, P. Jayarajan, A. Sampathkumar, G. R. Kanagachidambaresan, M. H. D. Nour Hindia, Valmik Tilwari, Kaharudin Dimyati, Henry Ojukwu, Iraj Sadegh Amiri

Erschienen in: Wireless Personal Communications | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The concept of the Internet of Things (IoT)-based Wireless Sensor Network (WSN) is rapidly gaining wide-spread recognition and acceptance in our day-to-day lives. Nowadays, the application of the IoT sensor nodes in various domains of endeavors such as health-care, smart homes, industrial and production sectors, control networks, and in many other fields has continued to increase steadily. In IoT-based WSN, sensor nodes dynamically join the internet and collaborate to accomplish a mission by sensing and collecting event data from the application field. The sensor nodes thus forward the collected information to the sink nodes or to the nearest base station for further transmission. However, one of the significant drawbacks of the IoT-based WSN networks is that the battery life of the sensor nodes is often short-lived due to the energy-limited nature of the electronic sensors, resulting in the network’s short lifetime. Thus, prolonging the lifetime duration of the sensor nodes becomes a fundamental task. Whether the battery life of a sensor node is extended for a reasonable length of time or depleted in a moment depends mainly on the energy efficiency of the underlying routing protocol. Therefore, the issue of network lifetime can be fundamentally addressed by implementing an efficient and robust energy-aware routing protocol for sustainable and prolonged network operation time in a WSN based IoT network scenario. In this paper, a cluster-based Backpressure routing (CBPR) scheme has been proposed, which targets to prolong the network lifetime and enhance the data transmission reliability using energy load-balancing mechanism. For every cluster of the sensor node, the CBPR scheme elects a cluster head which has the highest energy level and the shortest distance to the sink node. The proposed CBPR routing scheme further utilizes a very robust data aggregation algorithm to checkmate and prevent the circulation of redundant data packets in the network while also exploiting the Backpressure scheduling machine for data packets queueing and for route selection, which allows it to select the next-hop sensor node based on the queue length value of the sensor nodes. Extensive simulations have been performed to evaluate the efficiency of the proposed CBPR routing scheme, which was compared with that of other well-known routing schemes such as the Information Fusion Based Role Assignment and Data Routing for In-Network Aggregation in terms of throughput, energy consumption, and packet delivery ratio.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and challenges. IEEE Internet of Things Journal, 3(5), 637–646.CrossRef Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and challenges. IEEE Internet of Things Journal, 3(5), 637–646.CrossRef
4.
Zurück zum Zitat Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, W. (2017). A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications. IEEE Internet of Things Journal, 4(5), 1125–1142.CrossRef Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, W. (2017). A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications. IEEE Internet of Things Journal, 4(5), 1125–1142.CrossRef
5.
Zurück zum Zitat Lu, R., Heung, K., Lashkari, A. H., & Ghorbani, A. A. (2017). A lightweight privacy-preserving data aggregation scheme for fog computing-enhanced IoT. IEEE Access, 5, 3302–3312.CrossRef Lu, R., Heung, K., Lashkari, A. H., & Ghorbani, A. A. (2017). A lightweight privacy-preserving data aggregation scheme for fog computing-enhanced IoT. IEEE Access, 5, 3302–3312.CrossRef
6.
Zurück zum Zitat Malathy, S. et al. (2020). “An optimal network coding based backpressure routing approach for massive IoT network”. Wireless Networks, pp. 1–18. Malathy, S. et al. (2020). “An optimal network coding based backpressure routing approach for massive IoT network”. Wireless Networks, pp. 1–18.
7.
Zurück zum Zitat Amiri, I. S., et al. (2020). DABPR: A large-scale internet of things-based data aggregation back pressure routing for disaster management. Wireless Networks, 26(4), 2353–2374.MathSciNetCrossRef Amiri, I. S., et al. (2020). DABPR: A large-scale internet of things-based data aggregation back pressure routing for disaster management. Wireless Networks, 26(4), 2353–2374.MathSciNetCrossRef
9.
Zurück zum Zitat Boulfekhar, S., & Benmohammed, M. (2013). A novel energy efficient and lifetime maximization routing protocol in wireless sensor networks. Wireless personal communications, 72(2), 1333–1349.CrossRef Boulfekhar, S., & Benmohammed, M. (2013). A novel energy efficient and lifetime maximization routing protocol in wireless sensor networks. Wireless personal communications, 72(2), 1333–1349.CrossRef
10.
Zurück zum Zitat Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). "Energy-efficient communication protocol for wireless microsensor networks," IEEE, pp. 10-pp. Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). "Energy-efficient communication protocol for wireless microsensor networks," IEEE, pp. 10-pp.
11.
Zurück zum Zitat Dener, M. (2018). A new energy efficient hierarchical routing protocol for wireless sensor networks. Wireless Personal Communications, 101(1), 269–286.CrossRef Dener, M. (2018). A new energy efficient hierarchical routing protocol for wireless sensor networks. Wireless Personal Communications, 101(1), 269–286.CrossRef
12.
Zurück zum Zitat Lindsey, S., & Raghavendra, C. S. (2002). PEGASIS: Power-efficient gathering in sensor information systems. IEEE, 3, 3–3. Lindsey, S., & Raghavendra, C. S. (2002). PEGASIS: Power-efficient gathering in sensor information systems. IEEE, 3, 3–3.
13.
Zurück zum Zitat Maheswar, R. & Jayaparvathy, R. (2010). "Performance analysis using contention based queueing model for wireless sensor networks," The International Congress for global Science and Technology, pp. 59–59. Maheswar, R. & Jayaparvathy, R. (2010). "Performance analysis using contention based queueing model for wireless sensor networks," The International Congress for global Science and Technology, pp. 59–59.
14.
Zurück zum Zitat Jayarajan, P., Maheswar, R., Sivasankaran, V., Vigneswaran, D., & Udaiyakumar,R. (2018). "Performance analysis of contention based priority queuing model using N-policy model for cluster based sensor networks," IEEE, pp. 0229–0233. Jayarajan, P., Maheswar, R., Sivasankaran, V., Vigneswaran, D., & Udaiyakumar,R. (2018). "Performance analysis of contention based priority queuing model using N-policy model for cluster based sensor networks," IEEE, pp. 0229–0233.
15.
Zurück zum Zitat Maheswar, R., & Jayaparvathy, R. (2011). Performance analysis of cluster based sensor networks using N-policy M/G/1 queueing model. Eur. J. Scientific Research, 58(2), 177–188. Maheswar, R., & Jayaparvathy, R. (2011). Performance analysis of cluster based sensor networks using N-policy M/G/1 queueing model. Eur. J. Scientific Research, 58(2), 177–188.
16.
Zurück zum Zitat Jayarajan, P., Maheswar, R., & Kanagachidambaresan, G. R. (2019). Modified energy minimization scheme using queue threshold based on priority queueing model. Cluster Computing, 22(5), 12111–12118.CrossRef Jayarajan, P., Maheswar, R., & Kanagachidambaresan, G. R. (2019). Modified energy minimization scheme using queue threshold based on priority queueing model. Cluster Computing, 22(5), 12111–12118.CrossRef
17.
Zurück zum Zitat Maheswar, R., & Jayaparvathy, R. (2012). Performance analysis of fault tolerant node in wireless sensor network (pp. 121–126). New York: Springer. Maheswar, R., & Jayaparvathy, R. (2012). Performance analysis of fault tolerant node in wireless sensor network (pp. 121–126). New York: Springer.
18.
Zurück zum Zitat Jayarajan, P., Maheswar, R., Kanagachidambaresan, G. R., Sivasankaran, V., Balaji, M., & Das, J. (2018). "Performance evaluation of fault nodes using queue threshold based on N-policy priority queueing model," IEEE, pp. 1–5. Jayarajan, P., Maheswar, R., Kanagachidambaresan, G. R., Sivasankaran, V., Balaji, M., & Das, J. (2018). "Performance evaluation of fault nodes using queue threshold based on N-policy priority queueing model," IEEE, pp. 1–5.
19.
Zurück zum Zitat Laktharia, K. I., Kanagachidambaresan, G. R., Maheswar, R., Mahima, V., & Darwish, A. (2017). "Buffer capacity based node life time estimation in wireless sensor network," IEEE, pp. 1–5. Laktharia, K. I., Kanagachidambaresan, G. R., Maheswar, R., Mahima, V., & Darwish, A. (2017). "Buffer capacity based node life time estimation in wireless sensor network," IEEE, pp. 1–5.
20.
Zurück zum Zitat Nageswari, D., Maheswar, R., & Kanagachidambaresan, G. R. (2019). Performance analysis of cluster based homogeneous sensor network using energy efficient N-policy (EENP) model. Cluster Computing, 22(5), 12243–12250.CrossRef Nageswari, D., Maheswar, R., & Kanagachidambaresan, G. R. (2019). Performance analysis of cluster based homogeneous sensor network using energy efficient N-policy (EENP) model. Cluster Computing, 22(5), 12243–12250.CrossRef
21.
Zurück zum Zitat Maheswar, R., Jayarajan, P., Vimalraj, S., Sivagnanam, G., Sivasankaran, V., & Amiri, I. S. (2018). "Energy efficient real time environmental monitoring system using buffer management protocol," IEEE, pp. 1–5. Maheswar, R., Jayarajan, P., Vimalraj, S., Sivagnanam, G., Sivasankaran, V., & Amiri, I. S. (2018). "Energy efficient real time environmental monitoring system using buffer management protocol," IEEE, pp. 1–5.
22.
Zurück zum Zitat Jayarajan, P., Kanagachidambaresan, G. R., Sundararajan, T. V. P., Sakthipandi, K., Maheswar, R., & Karthikeyan, A. (2020). An energy-aware buffer management (EABM) routing protocol for WSN. The Journal of Supercomputing, 76(6), 4543–4555.CrossRef Jayarajan, P., Kanagachidambaresan, G. R., Sundararajan, T. V. P., Sakthipandi, K., Maheswar, R., & Karthikeyan, A. (2020). An energy-aware buffer management (EABM) routing protocol for WSN. The Journal of Supercomputing, 76(6), 4543–4555.CrossRef
23.
Zurück zum Zitat Nakamura, E. F., de Oliveira, H. A. B. F., Pontello, L. F., & Loureiro, A. A. F. (2006). "On demand role assignment for event-detection in sensor networks," In 11th IEEE symposium on computers and communications (ISCC'06), 26–29, pp. 941–947, https://doi.org/10.1109/ISCC.2006.110. Nakamura, E. F., de Oliveira, H. A. B. F., Pontello, L. F., & Loureiro, A. A. F. (2006). "On demand role assignment for event-detection in sensor networks," In 11th IEEE symposium on computers and communications (ISCC'06), 26–29, pp. 941–947, https://​doi.​org/​10.​1109/​ISCC.​2006.​110.
24.
Zurück zum Zitat Villas, L. A., Boukerche, A., Ramos, H. S., de Oliveira, H. A. B. F., de Araujo, R. B., & Loureiro, A. A. F. (2013). DRINA: A lightweight and reliable routing approach for in-network aggregation in wireless sensor networks. IEEE Transactions on Computers, 62(4), 676–689.MathSciNetCrossRef Villas, L. A., Boukerche, A., Ramos, H. S., de Oliveira, H. A. B. F., de Araujo, R. B., & Loureiro, A. A. F. (2013). DRINA: A lightweight and reliable routing approach for in-network aggregation in wireless sensor networks. IEEE Transactions on Computers, 62(4), 676–689.MathSciNetCrossRef
25.
Zurück zum Zitat Tilwari, V., Dimyati, K., Hindia, M. H. D., Fattouh, A., & Amiri, I. S. (2019). Mobility, residual energy, and link quality aware multipath routing in MANETs with Q-learning algorithm. Applied Sciences, 9(8), 1582.CrossRef Tilwari, V., Dimyati, K., Hindia, M. H. D., Fattouh, A., & Amiri, I. S. (2019). Mobility, residual energy, and link quality aware multipath routing in MANETs with Q-learning algorithm. Applied Sciences, 9(8), 1582.CrossRef
26.
Zurück zum Zitat Tilwari, V., et al. (2020). MCLMR: A multicriteria based multipath routing in the mobile ad hoc networks. Wireless Personal Communications, 112(4), 2461–2483.CrossRef Tilwari, V., et al. (2020). MCLMR: A multicriteria based multipath routing in the mobile ad hoc networks. Wireless Personal Communications, 112(4), 2461–2483.CrossRef
27.
Zurück zum Zitat Tilwari, V., Dimyati, K., Hindia, M. H. D., Noor Izam, T. F. B. T. M., & Amiri, I. S. (2020). EMBLR: A high-performance optimal routing approach for D2D communications in large-scale IoT 5G network. Symmetry, 12(3), 438.CrossRef Tilwari, V., Dimyati, K., Hindia, M. H. D., Noor Izam, T. F. B. T. M., & Amiri, I. S. (2020). EMBLR: A high-performance optimal routing approach for D2D communications in large-scale IoT 5G network. Symmetry, 12(3), 438.CrossRef
28.
Zurück zum Zitat Tilwari, V., Hindia, M. N., Dimyati, K., Qamar, F., Talip, A., & Sofian, M. (2019). Contention window and residual battery aware multipath routing schemes in mobile ad-hoc networks. International Journal of Technology, 10(7), 1376–1384.CrossRef Tilwari, V., Hindia, M. N., Dimyati, K., Qamar, F., Talip, A., & Sofian, M. (2019). Contention window and residual battery aware multipath routing schemes in mobile ad-hoc networks. International Journal of Technology, 10(7), 1376–1384.CrossRef
29.
Zurück zum Zitat Rappaport, T. S. (1996). Wireless communications: Principles and practice. New Jersey: Prentice Hall PTR.MATH Rappaport, T. S. (1996). Wireless communications: Principles and practice. New Jersey: Prentice Hall PTR.MATH
30.
Zurück zum Zitat Hu, S., & Han, J. (2014). Power control strategy for clustering wireless sensor networks based on multi-packet reception. IET Wireless Sensor Systems, 4(3), 122–129.CrossRef Hu, S., & Han, J. (2014). Power control strategy for clustering wireless sensor networks based on multi-packet reception. IET Wireless Sensor Systems, 4(3), 122–129.CrossRef
31.
Zurück zum Zitat Zheng, H., Yang, F., Tian, X., Gan, X., Wang, X., & Xiao, S. (2015). Data gathering with compressive sensing in wireless sensor networks: A random walk based approach. IEEE Transactions on Parallel and Distributed Systems, 26(1), 35–44.CrossRef Zheng, H., Yang, F., Tian, X., Gan, X., Wang, X., & Xiao, S. (2015). Data gathering with compressive sensing in wireless sensor networks: A random walk based approach. IEEE Transactions on Parallel and Distributed Systems, 26(1), 35–44.CrossRef
32.
Zurück zum Zitat Luo, D., Zhu, X., Wu, X., & Chen, G. (2011). "Maximizing lifetime for the shortest path aggregation tree in wireless sensor networks," IEEE, pp. 1566–1574. Luo, D., Zhu, X., Wu, X., & Chen, G. (2011). "Maximizing lifetime for the shortest path aggregation tree in wireless sensor networks," IEEE, pp. 1566–1574.
33.
Zurück zum Zitat Hai, L., Wang, J., Wang, P., Wang, H., & Yang, T. (2017). High-throughput network coding aware routing in time-varying multihop networks. IEEE Transactions on Vehicular Technology, 66(7), 6299–6309.CrossRef Hai, L., Wang, J., Wang, P., Wang, H., & Yang, T. (2017). High-throughput network coding aware routing in time-varying multihop networks. IEEE Transactions on Vehicular Technology, 66(7), 6299–6309.CrossRef
Metadaten
Titel
CBPR: A Cluster-Based Backpressure Routing for the Internet of Things
verfasst von
R. Maheswar
P. Jayarajan
A. Sampathkumar
G. R. Kanagachidambaresan
M. H. D. Nour Hindia
Valmik Tilwari
Kaharudin Dimyati
Henry Ojukwu
Iraj Sadegh Amiri
Publikationsdatum
17.02.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08173-0

Weitere Artikel der Ausgabe 4/2021

Wireless Personal Communications 4/2021 Zur Ausgabe

Neuer Inhalt