Skip to main content
Erschienen in: Wireless Personal Communications 3/2022

16.01.2022

On Physical Layer Security of Double Shadowed Rician Fading Channels

verfasst von: Rupender Singh, Meenakshi Rawat, Elias Yaacoub

Erschienen in: Wireless Personal Communications | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the proliferation of fifth-generation (5G) mobile communication wireless networks, the investigation into the performance of physical layer secrecy is increasingly becoming the center of attention of recent studies. Physical layer security (PLS) is the pivotal notion of enhancing the secrecy of mobile communication wireless networks against eavesdropping by utilizing the intrinsic randomness of the wireless channel. In this study, we focus on the information-theoretic secrecy perspective in which authorized users convey their information to each other through a quasi-static channel and adversary users are obtaining this secret information through illegitimate wiretap quasi-static channel, where it is assumed that all the channels are represented as double shadowed Rician distributed. In this context, analytical solutions for the expressions of various physical layer secrecy metrics include the strictly positive secrecy capacity (SPSC) and the lower bound on secure outage probability (SOPL) are procured in closed-form. In addition, another physical layer secrecy metric, i.e., average secrecy capacity (ASC) is also investigated and determined in analytical closed-form. The effect of double shadowing on the performance of PLS is investigated. It is found that severer shadowing improves the secrecy performance. Our results also show that the legitimate users can communicate secretly when the legitimate channel link is superior to illegitimate channel link.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yang, N., Wang, L., Geraci, G., Elkashlan, M., Yuan, J., & Renzo, M. D. (2015). Safeguarding 5G wireless communication networks using physical layer security. IEEE Communications Magazine, 53(4), 20–27.CrossRef Yang, N., Wang, L., Geraci, G., Elkashlan, M., Yuan, J., & Renzo, M. D. (2015). Safeguarding 5G wireless communication networks using physical layer security. IEEE Communications Magazine, 53(4), 20–27.CrossRef
2.
Zurück zum Zitat Kapetanovic, D., Zheng, G., & Rusek, F. (2015). Physical layer security for massive MIMO: An overview on passive eavesdropping and active attacks. IEEE Communications Magazine, 53(6), 21–27.CrossRef Kapetanovic, D., Zheng, G., & Rusek, F. (2015). Physical layer security for massive MIMO: An overview on passive eavesdropping and active attacks. IEEE Communications Magazine, 53(6), 21–27.CrossRef
3.
Zurück zum Zitat Zou, Y., Zhu, J., Yang, L., Liang, Y. C., & Yao, Y. D. (2015). Securing physical-layer communications for cognitive radio networks. IEEE Communications Magazine, 53(9), 48–54.CrossRef Zou, Y., Zhu, J., Yang, L., Liang, Y. C., & Yao, Y. D. (2015). Securing physical-layer communications for cognitive radio networks. IEEE Communications Magazine, 53(9), 48–54.CrossRef
4.
Zurück zum Zitat Chen, X., Zhong, C., Yuen, C., & Chen, H. (2015). Multi-antenna relay aided wireless physical layer security. IEEE Communications Magazine, 53(12), 40–46.CrossRef Chen, X., Zhong, C., Yuen, C., & Chen, H. (2015). Multi-antenna relay aided wireless physical layer security. IEEE Communications Magazine, 53(12), 40–46.CrossRef
5.
Zurück zum Zitat Ai, Y., Cheffena, M., Ohtsuki, T., & Zhuang, H. (2019). Secrecy performance analysis of wireless sensor networks. IEEE Sensors Letters, 3(5), 1–4.CrossRef Ai, Y., Cheffena, M., Ohtsuki, T., & Zhuang, H. (2019). Secrecy performance analysis of wireless sensor networks. IEEE Sensors Letters, 3(5), 1–4.CrossRef
6.
Zurück zum Zitat Bhargav, N., Cotton, S. L., & Simmons, D. E. (2016). Secrecy capacity analysis over κ-µ fading channels: Theory and applications. IEEE Transactions on Communications, 64(7), 3011–3024.CrossRef Bhargav, N., Cotton, S. L., & Simmons, D. E. (2016). Secrecy capacity analysis over κ-µ fading channels: Theory and applications. IEEE Transactions on Communications, 64(7), 3011–3024.CrossRef
7.
Zurück zum Zitat Romero-Jerez, J. M., & Lopez-Martinez, F. J. (2107). A new framework for the performance analysis of wireless communications under Hoyt (Nakagami-q) fading. IEEE Transactions on Information Theory, 63(3), 1693–1702. Romero-Jerez, J. M., & Lopez-Martinez, F. J. (2107). A new framework for the performance analysis of wireless communications under Hoyt (Nakagami-q) fading. IEEE Transactions on Information Theory, 63(3), 1693–1702.
8.
Zurück zum Zitat Jameel, F., Wyne, S., & Krikidis, I. (2017). Secrecy outage for wireless sensor networks. IEEE Communications Letters, 21(7), 1565–1568.CrossRef Jameel, F., Wyne, S., & Krikidis, I. (2017). Secrecy outage for wireless sensor networks. IEEE Communications Letters, 21(7), 1565–1568.CrossRef
9.
Zurück zum Zitat Lei, H., Ansari, I. S., Pan, G., Alomair, B., & Alouini, M. S. (2017). Secrecy capacity analysis over α−μ fading channels. IEEE Communications Letters, 21(6), 1445–1448.CrossRef Lei, H., Ansari, I. S., Pan, G., Alomair, B., & Alouini, M. S. (2017). Secrecy capacity analysis over α−μ fading channels. IEEE Communications Letters, 21(6), 1445–1448.CrossRef
10.
Zurück zum Zitat Gao, Y., Ge, H., & Gao, H. (2016). Physical layer security with maximal ratio combining over heterogeneous κ-µ and η-µ fading channels. Wireless Personal Communications, 86, 1387–1400.CrossRef Gao, Y., Ge, H., & Gao, H. (2016). Physical layer security with maximal ratio combining over heterogeneous κ-µ and η-µ fading channels. Wireless Personal Communications, 86, 1387–1400.CrossRef
11.
Zurück zum Zitat Tuan, V. P., & Kong, H. Y. (2019). Secrecy outage analysis of an untrusted relaying energy harvesting system with multiple eavesdroppers. Wireless Personal Communications, 107, 797–812.CrossRef Tuan, V. P., & Kong, H. Y. (2019). Secrecy outage analysis of an untrusted relaying energy harvesting system with multiple eavesdroppers. Wireless Personal Communications, 107, 797–812.CrossRef
12.
Zurück zum Zitat Ibdah, Y., & Ding, Y. (2015). Mobile-to-mobile channel measurements at 1.85 GHz in suburban environments. IEEE Transactions on Communications, 63(2), 466–475.CrossRef Ibdah, Y., & Ding, Y. (2015). Mobile-to-mobile channel measurements at 1.85 GHz in suburban environments. IEEE Transactions on Communications, 63(2), 466–475.CrossRef
13.
Zurück zum Zitat Hamid, S., Al-Dweik, A.J., Mirahmadi, M., Mubarak, K., & Shami, A. (2105). Inside-out propagation: Developing a unified model for the interference in 5G networks. IEEE Vehicular Technology Magazine, 10(2), 47–54. Hamid, S., Al-Dweik, A.J., Mirahmadi, M., Mubarak, K., & Shami, A. (2105). Inside-out propagation: Developing a unified model for the interference in 5G networks. IEEE Vehicular Technology Magazine, 10(2), 47–54.
14.
Zurück zum Zitat Yacoub, M. D. (2016). The α-η-κ-µ fading model. IEEE Transactions on Antennas and Propagation, 64(8), 3597–3610.MathSciNetCrossRef Yacoub, M. D. (2016). The α-η-κ-µ fading model. IEEE Transactions on Antennas and Propagation, 64(8), 3597–3610.MathSciNetCrossRef
15.
Zurück zum Zitat Lei, H., Zhang, H., Ansari, I. S., Gao, C., Guo, Y., Pan, G., & Qaraqe, K. A. (2016). Performance analysis of physical layer security over Generalized-K fading channels using a mixture Gamma distribution. IEEE Communications Letters, 20(2), 408–411.CrossRef Lei, H., Zhang, H., Ansari, I. S., Gao, C., Guo, Y., Pan, G., & Qaraqe, K. A. (2016). Performance analysis of physical layer security over Generalized-K fading channels using a mixture Gamma distribution. IEEE Communications Letters, 20(2), 408–411.CrossRef
16.
Zurück zum Zitat Kong, L., & Kaddoum, G. (2019). Secrecy characteristics with assistance of mixture gamma distribution. IEEE Wireless Communications Letters, 8(4), 1086–1089.CrossRef Kong, L., & Kaddoum, G. (2019). Secrecy characteristics with assistance of mixture gamma distribution. IEEE Wireless Communications Letters, 8(4), 1086–1089.CrossRef
17.
Zurück zum Zitat Alexandropoulos, G. C., & Peppas, K. P. (2018). Secrecy outage analysis over correlated composite Nakagami- m/Gamma fading channels. IEEE Wireless Communications Letters, 22(1), 77–80.CrossRef Alexandropoulos, G. C., & Peppas, K. P. (2018). Secrecy outage analysis over correlated composite Nakagami- m/Gamma fading channels. IEEE Wireless Communications Letters, 22(1), 77–80.CrossRef
18.
Zurück zum Zitat Kong, L., & Kaddoum, G. (2018). On physical layer security over the fisher-snedecor F wiretap fading channels. IEEE Access, 6, 39466–39472.CrossRef Kong, L., & Kaddoum, G. (2018). On physical layer security over the fisher-snedecor F wiretap fading channels. IEEE Access, 6, 39466–39472.CrossRef
19.
Zurück zum Zitat Ai, Y., Kong, L., & Cheffena, M. (2019). Secrecy outage analysis of double shadowed Rician channels. Electronics Letters, 55(13), 765–767.CrossRef Ai, Y., Kong, L., & Cheffena, M. (2019). Secrecy outage analysis of double shadowed Rician channels. Electronics Letters, 55(13), 765–767.CrossRef
20.
Zurück zum Zitat Singh, R., & Rawat, M. (2019). Performance analysis of physical layer security over Weibull/lognormal composite fading channel with MRC reception. International Journal of Electronics and Communications, 110, 1–13. Singh, R., & Rawat, M. (2019). Performance analysis of physical layer security over Weibull/lognormal composite fading channel with MRC reception. International Journal of Electronics and Communications, 110, 1–13.
21.
Zurück zum Zitat Simmons, N., Silva, C. R. N. D., Cotton, S. L., Sofotasios, P. C., & Yacoub, M. D. (2019). Double shadowing the Rician fading model. IEEE Wireless Communications Letters, 8(2), 344–347.CrossRef Simmons, N., Silva, C. R. N. D., Cotton, S. L., Sofotasios, P. C., & Yacoub, M. D. (2019). Double shadowing the Rician fading model. IEEE Wireless Communications Letters, 8(2), 344–347.CrossRef
22.
Zurück zum Zitat Singh, R., Rawat, M., & Pradhan, P. M. (2020). Effective capacity of wireless networks over double shadowed Rician fading channels. Wireless Networks, 26(2), 1347–1355.CrossRef Singh, R., Rawat, M., & Pradhan, P. M. (2020). Effective capacity of wireless networks over double shadowed Rician fading channels. Wireless Networks, 26(2), 1347–1355.CrossRef
24.
Zurück zum Zitat Prudnikov, A. P., Brychkov, Y. A., & Marichev, O. I. (1990). Integrals, and series: More special functions (Vol. 3). Gordon and Breach Science Publishers.MATH Prudnikov, A. P., Brychkov, Y. A., & Marichev, O. I. (1990). Integrals, and series: More special functions (Vol. 3). Gordon and Breach Science Publishers.MATH
25.
Zurück zum Zitat Sharma, B. L., & Abiodun, R. F. A. (1974). Generating function for generalized function of two variables. American Mathematical Society, 46(1), 69–72.MathSciNetMATH Sharma, B. L., & Abiodun, R. F. A. (1974). Generating function for generalized function of two variables. American Mathematical Society, 46(1), 69–72.MathSciNetMATH
26.
Zurück zum Zitat Gradshteyn, I. S., & Ryzhik, M. (2007). Table of Integrals, Series, and Product. Academic.MATH Gradshteyn, I. S., & Ryzhik, M. (2007). Table of Integrals, Series, and Product. Academic.MATH
27.
Zurück zum Zitat Arezumand, H., Zamiri-Jafarian, H., & Soleimani-Nasab, E. (2017). Outage and diversity analysis of underlay cognitive mixed RF-FSO cooperative systems. Journal of Optical Communications and Networking, 9(10), 909–920.CrossRef Arezumand, H., Zamiri-Jafarian, H., & Soleimani-Nasab, E. (2017). Outage and diversity analysis of underlay cognitive mixed RF-FSO cooperative systems. Journal of Optical Communications and Networking, 9(10), 909–920.CrossRef
28.
Zurück zum Zitat Bloch, M., Barros, J., Rodrigues, M. R. D., & McLaughlin, S. W. (2008). Wireless information-theoretic security. IEEE Transactions on Information Theory, 54(6), 2515–2534.MathSciNetCrossRef Bloch, M., Barros, J., Rodrigues, M. R. D., & McLaughlin, S. W. (2008). Wireless information-theoretic security. IEEE Transactions on Information Theory, 54(6), 2515–2534.MathSciNetCrossRef
Metadaten
Titel
On Physical Layer Security of Double Shadowed Rician Fading Channels
verfasst von
Rupender Singh
Meenakshi Rawat
Elias Yaacoub
Publikationsdatum
16.01.2022
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2022
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09465-9

Weitere Artikel der Ausgabe 3/2022

Wireless Personal Communications 3/2022 Zur Ausgabe

Neuer Inhalt