Skip to main content
Erschienen in: Wireless Personal Communications 3/2022

06.04.2022

Predicting Epileptic Seizures from EEG Spectral Band Features Using Convolutional Neural Network

verfasst von: Kuldeep Singh, Jyoteesh Malhotra

Erschienen in: Wireless Personal Communications | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Epilepsy, a globally growing chronic nervous disorder, affects the lives of millions of patients annually through the abrupt occurrence of recurrent seizures. It could result in serious injuries or the death of patients in various accidents. Thus, the automatic prediction of epileptic seizures is essential for alerting the patients well before its actual onset, thereby increasing their chances of being safe. In the present times, internet of things assisted technologies have started exploring the potential of cloud as well as fog computing services for providing solutions to such nervous disorders using deep learning. The present paper also proposes a convolutional neural network-based automatic seizure prediction model in a cloud-fog integrated scenario. This model utilizes EEG segments of shorter time durations, which are characterized by discrete spectral features, such as spectral power and mean amplitude spectrum. These features are extracted from five spectral sub-bands of 23-channel EEG signal recordings, including delta, theta, alpha, beta and gamma sub-bands. The performance evaluation through various simulations reveals the efficiency of the proposed model for seizure prediction using EEG segment duration of 30 s. In conclusion, the analysis of simulation results, as well as performance comparison with other contemporary methods evidently disclose that the proposed EEG spectral band features based convolutional neural network approach is a competent method for accurate epileptic seizure prediction in real-time with an average accuracy of 97.4%, average sensitivity of 98%, average specificity of 96.6% and average false discovery rate of 2.7% only.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
4.
Zurück zum Zitat Freestone, D. R., Karoly, P. J., & Cook, M. J. (2017). A forward-looking review of seizure prediction. Current Opinion in Neurology, 30(2), 167–173.CrossRef Freestone, D. R., Karoly, P. J., & Cook, M. J. (2017). A forward-looking review of seizure prediction. Current Opinion in Neurology, 30(2), 167–173.CrossRef
5.
6.
Zurück zum Zitat Kuhlmann, L., Lehnertz, K., Richardson, M. P., Schelter, B., & Zaveri, H. P. (2018). Seizure prediction–Ready for a new era. Nature Reviews Neurology, p. 1. Kuhlmann, L., Lehnertz, K., Richardson, M. P., Schelter, B., & Zaveri, H. P. (2018). Seizure prediction–Ready for a new era. Nature Reviews Neurology, p. 1.
7.
Zurück zum Zitat Ullah, I., Hussain, M., Aboalsamh, H., et al. (2018). An automated system for epilepsy detection using EEG brain signals based on deep learning approach. Expert Systems with Applications, 107, 61–71.CrossRef Ullah, I., Hussain, M., Aboalsamh, H., et al. (2018). An automated system for epilepsy detection using EEG brain signals based on deep learning approach. Expert Systems with Applications, 107, 61–71.CrossRef
8.
Zurück zum Zitat Acharya, U. R., Hagiwara, Y., & Adeli, H. (2018). Automated seizure prediction. Epilepsy and Behavior, 88, 251–261.CrossRef Acharya, U. R., Hagiwara, Y., & Adeli, H. (2018). Automated seizure prediction. Epilepsy and Behavior, 88, 251–261.CrossRef
9.
Zurück zum Zitat Tsai, J.-C., Leu, J.-S., Prakosa, S. W., Hsiao, L.-C., Huang, P.-C., Yang, S.-Y., & Huang, Y.-T. (2021). Design and implementation of an internet of healthcare things system for respiratory diseases. Wireless Personal Communications, 117(2), 337–353.CrossRef Tsai, J.-C., Leu, J.-S., Prakosa, S. W., Hsiao, L.-C., Huang, P.-C., Yang, S.-Y., & Huang, Y.-T. (2021). Design and implementation of an internet of healthcare things system for respiratory diseases. Wireless Personal Communications, 117(2), 337–353.CrossRef
10.
Zurück zum Zitat Kadhim, K. T., Alsahlany, A. M., Wadi, S. M., & Kadhum, H. T. (2020). An overview of patient’s health status monitoring system based on internet of things (IoT). Wireless Personal Communications, 114(3), 2235–2262.CrossRef Kadhim, K. T., Alsahlany, A. M., Wadi, S. M., & Kadhum, H. T. (2020). An overview of patient’s health status monitoring system based on internet of things (IoT). Wireless Personal Communications, 114(3), 2235–2262.CrossRef
11.
Zurück zum Zitat Veena, S., & Aravindhar, D. J. (2021). Remote monitoring system for the detection of prenatal risk in a pregnant woman. Wireless Personal Communications, 119(2), 1051–1064.CrossRef Veena, S., & Aravindhar, D. J. (2021). Remote monitoring system for the detection of prenatal risk in a pregnant woman. Wireless Personal Communications, 119(2), 1051–1064.CrossRef
13.
Zurück zum Zitat Sujaya, B., & Bhaskar, R. S. (2021). A modelling of context-aware elderly healthcare eco-system-(CA-EHS) using signal analysis and machine learning approach. Wireless Personal Communications, 119(3), 2501–2516.CrossRef Sujaya, B., & Bhaskar, R. S. (2021). A modelling of context-aware elderly healthcare eco-system-(CA-EHS) using signal analysis and machine learning approach. Wireless Personal Communications, 119(3), 2501–2516.CrossRef
15.
Zurück zum Zitat Singh, G., Kaur, M., & Singh, B. (2021). Detection of epileptic seizure EEG signal using multiscale entropies and complete ensemble empirical mode decomposition. Wireless Personal Communications, 116(1), 845–864.CrossRef Singh, G., Kaur, M., & Singh, B. (2021). Detection of epileptic seizure EEG signal using multiscale entropies and complete ensemble empirical mode decomposition. Wireless Personal Communications, 116(1), 845–864.CrossRef
16.
Zurück zum Zitat Singh, K., Singh, S., & Malhotra, J. (2021). Spectral features based convolutional neural network for accurate and prompt identification of schizophrenic patients. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 235(2), 167–184.CrossRef Singh, K., Singh, S., & Malhotra, J. (2021). Spectral features based convolutional neural network for accurate and prompt identification of schizophrenic patients. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 235(2), 167–184.CrossRef
17.
Zurück zum Zitat Desai, R., Porob, P., Rebelo, P., Edla, D. R., & Bablani, A. (2020). Eeg data classification for mental state analysis using wavelet packet transform and gaussian process classifier. Wireless Personal Communications, 115(3), 2149–2169.CrossRef Desai, R., Porob, P., Rebelo, P., Edla, D. R., & Bablani, A. (2020). Eeg data classification for mental state analysis using wavelet packet transform and gaussian process classifier. Wireless Personal Communications, 115(3), 2149–2169.CrossRef
18.
Zurück zum Zitat Abbasi, H., Rasouli Kenari, A., & Shamsi, M. (2021). A model for identifying the behavior of Alzheimer’s disease patients in smart homes. Wireless Personal Communications, pp. 1–21. Abbasi, H., Rasouli Kenari, A., & Shamsi, M. (2021). A model for identifying the behavior of Alzheimer’s disease patients in smart homes. Wireless Personal Communications, pp. 1–21.
19.
Zurück zum Zitat LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436.CrossRef LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436.CrossRef
20.
Zurück zum Zitat Faust, O., Hagiwara, Y., Hong, T. J., Lih, O. S., & Acharya, U. R. (2018). Deep learning for healthcare applications based on physiological signals: A review. Computer Methods and Programs in Biomedicine, 161, 1–13.CrossRef Faust, O., Hagiwara, Y., Hong, T. J., Lih, O. S., & Acharya, U. R. (2018). Deep learning for healthcare applications based on physiological signals: A review. Computer Methods and Programs in Biomedicine, 161, 1–13.CrossRef
21.
Zurück zum Zitat Shoeb, A. (2009). Application of Machine Learning to Epileptic Seizure Onset Detection and Treatment. Master’s thesis, Massachusetts Institute of Technology. Shoeb, A. (2009). Application of Machine Learning to Epileptic Seizure Onset Detection and Treatment. Master’s thesis, Massachusetts Institute of Technology.
22.
Zurück zum Zitat Ouyang, C.-S., Chen, B.-J., Cai, Z.-E., Lin, L.-C., Wu, R.-C., Chiang, C.-T., & Yang, R.-C. (2019). Feature Extraction of EEG Signals for Epileptic Seizure Prediction. In: Y. Zhao, T.-Y. Wu, T.-H. Chang, J.-S. Pan, & L. C. Jain, editors, Advances in Smart Vehicular Technology, Transportation, Communication and Applications, pp. 298–303. Cham: Springer International Publishing. ISBN 978-3-030-04585-2. Ouyang, C.-S., Chen, B.-J., Cai, Z.-E., Lin, L.-C., Wu, R.-C., Chiang, C.-T., & Yang, R.-C. (2019). Feature Extraction of EEG Signals for Epileptic Seizure Prediction. In: Y. Zhao, T.-Y. Wu, T.-H. Chang, J.-S. Pan, & L. C. Jain, editors, Advances in Smart Vehicular Technology, Transportation, Communication and Applications, pp. 298–303. Cham: Springer International Publishing. ISBN 978-3-030-04585-2.
23.
Zurück zum Zitat Tsiouris, K. M., Pezoulas, V. C., Koutsouris, D. D., Zervakis, M., & Fotiadis, D. I. (2017). Discrimination of preictal and interictal brain states from long-term EEG data. In: 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS), pp. 318–323. ISSN 2372-9198. https://doi.org/10.1109/CBMS.2017.33 Tsiouris, K. M., Pezoulas, V. C., Koutsouris, D. D., Zervakis, M., & Fotiadis, D. I. (2017). Discrimination of preictal and interictal brain states from long-term EEG data. In: 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS), pp. 318–323. ISSN 2372-9198. https://​doi.​org/​10.​1109/​CBMS.​2017.​33
26.
Zurück zum Zitat Kitano, L. A. S., Sousa, M. A. A., Santos, S. D., Pires, R., Thome-Souza, S., & Campo, A. B. (2018). Epileptic seizure prediction from EEG signals using unsupervised learning and a polling-based decision process. In: V. Kůrková, Y. Manolopoulos, B. Hammer, L. Iliadis, & I. Maglogiannis, (eds.), Artificial neural networks and machine learning – ICANN 2018, pp. 117–126. Cham: Springer International Publishing. ISBN 978-3-030-01421-6. Kitano, L. A. S., Sousa, M. A. A., Santos, S. D., Pires, R., Thome-Souza, S., & Campo, A. B. (2018). Epileptic seizure prediction from EEG signals using unsupervised learning and a polling-based decision process. In: V. Kůrková, Y. Manolopoulos, B. Hammer, L. Iliadis, & I. Maglogiannis, (eds.), Artificial neural networks and machine learning – ICANN 2018, pp. 117–126. Cham: Springer International Publishing. ISBN 978-3-030-01421-6.
29.
Zurück zum Zitat Abdelhameed, A. & Bayoumi, M. (2018). Semi-supervised deep learning system for epileptic seizures onset prediction. In: 2018 17th IEEE international conference on machine learning and applications (ICMLA), pp. 1186–1191. IEEE. Abdelhameed, A. & Bayoumi, M. (2018). Semi-supervised deep learning system for epileptic seizures onset prediction. In: 2018 17th IEEE international conference on machine learning and applications (ICMLA), pp. 1186–1191. IEEE.
30.
Zurück zum Zitat Duan, L., Hou, J., Qiao, Y., & Miao, J. (2019). Epileptic seizure prediction based on convolutional recurrent neural network with multi-timescale. In: Intelligence science and big data engineering. Big data and machine learning, pp. 139–150. Springer https://doi.org/10.1007/978-3-030-36204-1-11 Duan, L., Hou, J., Qiao, Y., & Miao, J. (2019). Epileptic seizure prediction based on convolutional recurrent neural network with multi-timescale. In: Intelligence science and big data engineering. Big data and machine learning, pp. 139–150. Springer https://​doi.​org/​10.​1007/​978-3-030-36204-1-11
31.
Zurück zum Zitat Truong, N. D., Nguyen, A. D., Kuhlmann, L., Bonyadi, M. R., Yang, J., & Kavehei, O. (2017). A generalised seizure prediction with convolutional neural networks for intracranial and scalp electroencephalogram data analysis. arXiv preprintarXiv:170701976. Truong, N. D., Nguyen, A. D., Kuhlmann, L., Bonyadi, M. R., Yang, J., & Kavehei, O. (2017). A generalised seizure prediction with convolutional neural networks for intracranial and scalp electroencephalogram data analysis. arXiv preprintarXiv:​170701976.
33.
Zurück zum Zitat Zhang, S., Chen, D., Ranjan, R., Ke, H., Tang, Y., & Zomaya, A. Y. (2021). A lightweight solution to epileptic seizure prediction based on EEG synchronization measurement. The Journal of Supercomputing, 77(4), 3914–3932.CrossRef Zhang, S., Chen, D., Ranjan, R., Ke, H., Tang, Y., & Zomaya, A. Y. (2021). A lightweight solution to epileptic seizure prediction based on EEG synchronization measurement. The Journal of Supercomputing, 77(4), 3914–3932.CrossRef
34.
Zurück zum Zitat Usman, S. M., Khalid, S., & Bashir, Z. (2021). Epileptic seizure prediction using scalp electroencephalogram signals. Biocybernetics and Biomedical Engineering, 41(1), 211–220.CrossRef Usman, S. M., Khalid, S., & Bashir, Z. (2021). Epileptic seizure prediction using scalp electroencephalogram signals. Biocybernetics and Biomedical Engineering, 41(1), 211–220.CrossRef
35.
Zurück zum Zitat Usman, S. M., Khalid, S., & Bashir, S. (2021). A deep learning based ensemble learning method for epileptic seizure prediction. Computers in Biology and Medicine, 136, 104710.CrossRef Usman, S. M., Khalid, S., & Bashir, S. (2021). A deep learning based ensemble learning method for epileptic seizure prediction. Computers in Biology and Medicine, 136, 104710.CrossRef
36.
Zurück zum Zitat Gao, Y., Chen, X., Liu, A., Liang, D., Wu, L., Qian, R., Xie, H., & Zhang, Y. (2022). Pediatric seizure prediction in scalp EEG using a multi-scale neural network with dilated convolutions. IEEE Journal of Translational Engineering in Health and Medicine. Gao, Y., Chen, X., Liu, A., Liang, D., Wu, L., Qian, R., Xie, H., & Zhang, Y. (2022). Pediatric seizure prediction in scalp EEG using a multi-scale neural network with dilated convolutions. IEEE Journal of Translational Engineering in Health and Medicine.
39.
Zurück zum Zitat Kraemer, F. A., Braten, A. E., Tamkittikhun, N., & Palma, D. (2017). Fog computing in healthcare-a review and discussion. IEEE Access, 5, 9206–9222.CrossRef Kraemer, F. A., Braten, A. E., Tamkittikhun, N., & Palma, D. (2017). Fog computing in healthcare-a review and discussion. IEEE Access, 5, 9206–9222.CrossRef
41.
Zurück zum Zitat Homan, R. W. (1988). The 10–20 electrode system and cerebral location. American Journal of EEG Technology, 28(4), 269–279.CrossRef Homan, R. W. (1988). The 10–20 electrode system and cerebral location. American Journal of EEG Technology, 28(4), 269–279.CrossRef
43.
Zurück zum Zitat Daud, S. S. & Sudirman, R. (2015). Butterworth bandpass and stationary wavelet transform filter comparison for electroencephalography signal. In: 2015 6th international conference on intelligent systems, modelling and simulation, pp. 123–126. https://doi.org/10.1109/ISMS.2015.29 Daud, S. S. & Sudirman, R. (2015). Butterworth bandpass and stationary wavelet transform filter comparison for electroencephalography signal. In: 2015 6th international conference on intelligent systems, modelling and simulation, pp. 123–126. https://​doi.​org/​10.​1109/​ISMS.​2015.​29
45.
Zurück zum Zitat Robertson, D. G. E., & Dowling, J. J. (2003). Design and responses of Butterworth and critically damped digital filters. Journal of Electromyography and Kinesiology, 13(6), 569–573.CrossRef Robertson, D. G. E., & Dowling, J. J. (2003). Design and responses of Butterworth and critically damped digital filters. Journal of Electromyography and Kinesiology, 13(6), 569–573.CrossRef
47.
Zurück zum Zitat Subha, D. P., Joseph, P. K., Acharya, R., & Lim, C. M. (2010). EEG signal analysis: a survey. Journal of Medical Systems, 34(2), 195–212.CrossRef Subha, D. P., Joseph, P. K., Acharya, R., & Lim, C. M. (2010). EEG signal analysis: a survey. Journal of Medical Systems, 34(2), 195–212.CrossRef
52.
Zurück zum Zitat Moretti, D. V., Babiloni, C., Binetti, G., Cassetta, E., Forno, G. D., Ferreric, F., Ferri, R., Lanuzza, B., Miniussi, C., Nobili, F., Rodriguez, G., Salinari, S., & Rossini, P. M. (2004). Individual analysis of EEG frequency and band power in mild Alzheimer’s disease. Clinical Neurophysiology, 115(2), 299–308. https://doi.org/10.1016/S1388-2457(03)00345-6CrossRef Moretti, D. V., Babiloni, C., Binetti, G., Cassetta, E., Forno, G. D., Ferreric, F., Ferri, R., Lanuzza, B., Miniussi, C., Nobili, F., Rodriguez, G., Salinari, S., & Rossini, P. M. (2004). Individual analysis of EEG frequency and band power in mild Alzheimer’s disease. Clinical Neurophysiology, 115(2), 299–308. https://​doi.​org/​10.​1016/​S1388-2457(03)00345-6CrossRef
53.
Zurück zum Zitat Andrews, J. R., & Arthur, M. G. (1977). Spectrum amplitude: definition, generation, and measurement (Vol. 699). National Bureau of Standards, Institute for Basic Standards: Dept. of Commerce. Andrews, J. R., & Arthur, M. G. (1977). Spectrum amplitude: definition, generation, and measurement (Vol. 699). National Bureau of Standards, Institute for Basic Standards: Dept. of Commerce.
54.
57.
Zurück zum Zitat Khan, N. S., & Ghani, M. S. (2021). A survey of deep learning based models for human activity recognition. Wireless Personal Communications, 120(2), 1593–1635.CrossRef Khan, N. S., & Ghani, M. S. (2021). A survey of deep learning based models for human activity recognition. Wireless Personal Communications, 120(2), 1593–1635.CrossRef
60.
Zurück zum Zitat Zhang, Z. & Sabuncu, M. R. (2018). Generalized cross entropy loss for training deep neural networks with noisy labels. CoRR, arXiv:1805.07836. Zhang, Z. & Sabuncu, M. R. (2018). Generalized cross entropy loss for training deep neural networks with noisy labels. CoRR, arXiv:​1805.​07836.
61.
Zurück zum Zitat Baratloo, A., Hosseini, M., Negida, A., & El Ashal, G. (2015). Part 1: Simple definition and calculation of accuracy, sensitivity and specificity. Emergency, 3(2), 48–49. Baratloo, A., Hosseini, M., Negida, A., & El Ashal, G. (2015). Part 1: Simple definition and calculation of accuracy, sensitivity and specificity. Emergency, 3(2), 48–49.
62.
Zurück zum Zitat Powers, D. M. (2011). Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. Journal of Machine Learning Technologies, 2(1), 37–63.MathSciNet Powers, D. M. (2011). Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. Journal of Machine Learning Technologies, 2(1), 37–63.MathSciNet
63.
Zurück zum Zitat Benjamini, Y. (2010). Discovering the false discovery rate. Journal of the Royal Statistical Society: series B (statistical methodology), 72(4), 405–416.MathSciNetCrossRef Benjamini, Y. (2010). Discovering the false discovery rate. Journal of the Royal Statistical Society: series B (statistical methodology), 72(4), 405–416.MathSciNetCrossRef
64.
Zurück zum Zitat Li, J., & Wang, Z. J. (2009). Controlling the false discovery rate of the association/causality structure learned with the PC algorithm. Journal of Machine Learning Research, 10, 475–514. Li, J., & Wang, Z. J. (2009). Controlling the false discovery rate of the association/causality structure learned with the PC algorithm. Journal of Machine Learning Research, 10, 475–514.
Metadaten
Titel
Predicting Epileptic Seizures from EEG Spectral Band Features Using Convolutional Neural Network
verfasst von
Kuldeep Singh
Jyoteesh Malhotra
Publikationsdatum
06.04.2022
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2022
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09678-y

Weitere Artikel der Ausgabe 3/2022

Wireless Personal Communications 3/2022 Zur Ausgabe

Neuer Inhalt