Skip to main content
Erschienen in: Experimental Mechanics 3/2016

23.11.2015

Drop Tower Adaptation for Medium Strain Rate Tensile Testing

verfasst von: N. Perogamvros, T. Mitropoulos, G. Lampeas

Erschienen in: Experimental Mechanics | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A novel drop tower modification was designed and implemented in order to enable tensile coupon testing at medium strain rate regime (1–200/s), using a drop weight apparatus, instead of intermediate strain rate servo-hydraulic tensile machines. The developed tensile device, which consists of one movable and one rigid frame, has the ability to transform the compression loading of a drop tower machine into tension loading on the specimen. A simulation model of the proposed concept has been developed in the explicit FE code LS-DYNA and validated by experimental measurements of load and displacement histories. During the development phase, the model was used for the device preliminary design, i.e. the selection of the optimal acquisition sensor locations and the introduction of an absorber material in order to avoid undesired vibrations, as well as for the sizing of the main components of the device. During the testing phase, the numerical model was used for the determination of the appropriate testing parameters which lead to the desired testing conditions (velocity, strain rate and load level). The final design of the tensile device was implemented in an Instron drop tower machine and initial experimental tests were performed for the assessment of the proposed method. Details of the material types and specimen geometries that were tested, as well as impact testing parameters, such as range of strain rate, energy and velocity are comprehensively described in this paper. It was demonstrated that the proposed device can serve as a cost effective alternative of servo-hydraulic tensile machines, is compatible to Digital Image Correlation optical devices due to the good optical access to the tested specimen and does not introduce significant ringing effects in the piezoelectric load cell; therefore, it is suitable for medium strain rate tensile testing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Sierakowski RL (1997) Strain rate effects in composites. Appl Mech Rev 50:741–761CrossRef Sierakowski RL (1997) Strain rate effects in composites. Appl Mech Rev 50:741–761CrossRef
2.
Zurück zum Zitat Hamouda AMS, Hashmi MSJ (1998) Testing of composite materials at high rates of strain: advances and challenges. J Mater Process Tech 77:327–336CrossRef Hamouda AMS, Hashmi MSJ (1998) Testing of composite materials at high rates of strain: advances and challenges. J Mater Process Tech 77:327–336CrossRef
3.
Zurück zum Zitat Yang X, Hector LG Jr, Wang J (2014) A combined theoretical/experimental approach for reducing ringing artifacts in low dynamic testing with servo-hydraulic load frames. Exp Mech 54:775–789CrossRef Yang X, Hector LG Jr, Wang J (2014) A combined theoretical/experimental approach for reducing ringing artifacts in low dynamic testing with servo-hydraulic load frames. Exp Mech 54:775–789CrossRef
4.
Zurück zum Zitat Hopkinson B (1921) The scientific papers of Bertram Hopkinson. Cambridge University Press, CambridgeMATH Hopkinson B (1921) The scientific papers of Bertram Hopkinson. Cambridge University Press, CambridgeMATH
5.
Zurück zum Zitat Landon JW, Quinney H (1923) Experiments with the Hopkinson pressure bar. Proc R Soc A 103:622–643CrossRef Landon JW, Quinney H (1923) Experiments with the Hopkinson pressure bar. Proc R Soc A 103:622–643CrossRef
6.
Zurück zum Zitat Davies RM (1948) A critical study of the Hopkinson pressure bar. Philos T R Soc 240:375–457CrossRefMATH Davies RM (1948) A critical study of the Hopkinson pressure bar. Philos T R Soc 240:375–457CrossRefMATH
7.
Zurück zum Zitat Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. P Phys Soc B 62:676–700CrossRef Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. P Phys Soc B 62:676–700CrossRef
8.
Zurück zum Zitat Lindholm US (1964) Some experiments with the split Hopkinson pressure bar. J Mech Phys Solids 12:317–335CrossRef Lindholm US (1964) Some experiments with the split Hopkinson pressure bar. J Mech Phys Solids 12:317–335CrossRef
9.
Zurück zum Zitat Lindholm US, Yeakley LM (1965) Dynamic deformation of single and polycrystalline aluminium. J Mech Phys Solids 13:41–53CrossRef Lindholm US, Yeakley LM (1965) Dynamic deformation of single and polycrystalline aluminium. J Mech Phys Solids 13:41–53CrossRef
10.
Zurück zum Zitat Hsiao HM, Daniel IM, Cordes RD (1998) Dynamic compressive behavior of thick composite materials. Exp Mech 38:172–180CrossRef Hsiao HM, Daniel IM, Cordes RD (1998) Dynamic compressive behavior of thick composite materials. Exp Mech 38:172–180CrossRef
11.
Zurück zum Zitat Gilat A, Goldberg RK, Roberts GD (2002) Experimental study of strain-rate-dependent behavior of carbon/epoxy composite. Compos Sci Technol 62:1469–1476CrossRef Gilat A, Goldberg RK, Roberts GD (2002) Experimental study of strain-rate-dependent behavior of carbon/epoxy composite. Compos Sci Technol 62:1469–1476CrossRef
12.
Zurück zum Zitat Schaefer JD, Werner BT, Daniel IM (2014) Strain-rate-dependent failure of a toughened matrix composite. Exp Mech 54:1111–1120CrossRef Schaefer JD, Werner BT, Daniel IM (2014) Strain-rate-dependent failure of a toughened matrix composite. Exp Mech 54:1111–1120CrossRef
13.
Zurück zum Zitat Dunand M, Gary G, Mohr D (2013) Load-inversion device for the high strain rate tensile testing of sheet materials with Hopkinson pressure bars. Exp Mech 53:1177–1188CrossRef Dunand M, Gary G, Mohr D (2013) Load-inversion device for the high strain rate tensile testing of sheet materials with Hopkinson pressure bars. Exp Mech 53:1177–1188CrossRef
14.
Zurück zum Zitat Hauser FE (1966) Techniques for measuring stress–strain relations at high strain rates. Exp Mech 6:395–402CrossRef Hauser FE (1966) Techniques for measuring stress–strain relations at high strain rates. Exp Mech 6:395–402CrossRef
15.
Zurück zum Zitat Duffy J, Campbell JD, Hawley RH (1971) On the use of a torsional split Hopkinson bar to study rate effects in 1100–0 aluminum. J Appl Mech 38:83–91CrossRef Duffy J, Campbell JD, Hawley RH (1971) On the use of a torsional split Hopkinson bar to study rate effects in 1100–0 aluminum. J Appl Mech 38:83–91CrossRef
16.
Zurück zum Zitat Nie X, Prabhu R, Chen WW, Caruthers JM, Weerasooriya T (2011) A Kolsky torsion bar technique for characterization of dynamic shear response of soft materials. Exp Mech 51:1527–1534CrossRef Nie X, Prabhu R, Chen WW, Caruthers JM, Weerasooriya T (2011) A Kolsky torsion bar technique for characterization of dynamic shear response of soft materials. Exp Mech 51:1527–1534CrossRef
17.
Zurück zum Zitat Xiao X (2008) Dynamic tensile testing of plastic materials. Polym Test 27:164–178CrossRef Xiao X (2008) Dynamic tensile testing of plastic materials. Polym Test 27:164–178CrossRef
18.
Zurück zum Zitat Toso NRS (2009) Contribution to the modelling and simulation of aircraft structures impacting on water. Dissertation, Universität Stuttgart Toso NRS (2009) Contribution to the modelling and simulation of aircraft structures impacting on water. Dissertation, Universität Stuttgart
19.
Zurück zum Zitat Jaspers SPFC, Dautzenberg JH (2002) Material behaviour in metal cutting: strains, strain rates and temperatures in chip formation. J Mater Process Tech 121:123–135CrossRef Jaspers SPFC, Dautzenberg JH (2002) Material behaviour in metal cutting: strains, strain rates and temperatures in chip formation. J Mater Process Tech 121:123–135CrossRef
20.
Zurück zum Zitat Kalpakjian S, Schmid SR (2008) Manufacturing processes for engineering materials, 5th edn. Pearson Education, New York Kalpakjian S, Schmid SR (2008) Manufacturing processes for engineering materials, 5th edn. Pearson Education, New York
21.
Zurück zum Zitat Altan T, Tekkaya A (2012) Sheet metal forming: processes and applications. ASM International, Ohio Altan T, Tekkaya A (2012) Sheet metal forming: processes and applications. ASM International, Ohio
22.
Zurück zum Zitat Liu W (2015) Identification of strainrate dependent hardening sensitivity of metallic sheets under in-plane biaxial loading. Dissertation, INSA de Rennes Liu W (2015) Identification of strainrate dependent hardening sensitivity of metallic sheets under in-plane biaxial loading. Dissertation, INSA de Rennes
23.
Zurück zum Zitat Song B, Chen WW, Lu W-Y (2007) Mechanical characterization at intermediate strain rates for rate effects on an epoxy syntactic foam. Int J Mech Sci 49:1336–1343CrossRef Song B, Chen WW, Lu W-Y (2007) Mechanical characterization at intermediate strain rates for rate effects on an epoxy syntactic foam. Int J Mech Sci 49:1336–1343CrossRef
24.
Zurück zum Zitat Othman R, Guegan P, Challita G, Pasco F, LeBreton D (2009) A modified servo-hydraulic machine for testing at intermediate strain rates. Int J Impact Eng 36:460–467CrossRef Othman R, Guegan P, Challita G, Pasco F, LeBreton D (2009) A modified servo-hydraulic machine for testing at intermediate strain rates. Int J Impact Eng 36:460–467CrossRef
25.
Zurück zum Zitat Larour P (2010) Strain rate sensitivity of automotive sheet steels: influence of plastic strain, strain rate, temperature, microstructure, bake hardening and pre-strain. Dissertation, RWTH Aachen Larour P (2010) Strain rate sensitivity of automotive sheet steels: influence of plastic strain, strain rate, temperature, microstructure, bake hardening and pre-strain. Dissertation, RWTH Aachen
26.
Zurück zum Zitat Whittington WR, Oppedal AL, Francis DK, Horstemeyer MF (2015) A novel intermediate strain rate testing device: the serpentine transmitted bar. Int J Impact Eng 81:1–7CrossRef Whittington WR, Oppedal AL, Francis DK, Horstemeyer MF (2015) A novel intermediate strain rate testing device: the serpentine transmitted bar. Int J Impact Eng 81:1–7CrossRef
27.
Zurück zum Zitat Matera R, Albertini C, Stoloff NS (1978) The mechanical behavior of aligned eutectics at high rates of strain. Mater Sci Eng 32:267–276CrossRef Matera R, Albertini C, Stoloff NS (1978) The mechanical behavior of aligned eutectics at high rates of strain. Mater Sci Eng 32:267–276CrossRef
28.
Zurück zum Zitat Daniel IM, Liber T (1978) Testing of fibrous composites at high strain rates. Proceedings of Second International Conference on Composite Materials 1003–1018 Daniel IM, Liber T (1978) Testing of fibrous composites at high strain rates. Proceedings of Second International Conference on Composite Materials 1003–1018
29.
Zurück zum Zitat Zhu D, Rajan SD, Mobasher B, Peled A, Mignolet M (2011) Modal analysis of a servo-hydraulic high speed machine and its application to dynamic tensile testing at an intermediate strain rate. Exp Mech 51:1347–1363CrossRef Zhu D, Rajan SD, Mobasher B, Peled A, Mignolet M (2011) Modal analysis of a servo-hydraulic high speed machine and its application to dynamic tensile testing at an intermediate strain rate. Exp Mech 51:1347–1363CrossRef
30.
Zurück zum Zitat Broutman LJ, Rotem A (1975) Impact strength and toughness of fiber composite materials. ASTM STP 568:114–133 Broutman LJ, Rotem A (1975) Impact strength and toughness of fiber composite materials. ASTM STP 568:114–133
31.
Zurück zum Zitat Wu JS, Friedrich K, Grosso M (1989) Impact behaviour of short fibre/liquid crystal polymer composites. Composites 20:223–233CrossRef Wu JS, Friedrich K, Grosso M (1989) Impact behaviour of short fibre/liquid crystal polymer composites. Composites 20:223–233CrossRef
32.
Zurück zum Zitat Lifshitz JM (1976) Impact strength of angle ply fiber reinforced materials. J Compos Mater 10:92–101CrossRef Lifshitz JM (1976) Impact strength of angle ply fiber reinforced materials. J Compos Mater 10:92–101CrossRef
33.
Zurück zum Zitat Marom G, Drukker E, Weinberg A, Banbaji J (1986) Impact behaviour of carbon/Kevlar hybrid composites. Composites 17:150–153CrossRef Marom G, Drukker E, Weinberg A, Banbaji J (1986) Impact behaviour of carbon/Kevlar hybrid composites. Composites 17:150–153CrossRef
34.
Zurück zum Zitat Gustin J, Mahinfalah M, Nakhaie Jazar G, Aagaah MR (2004) Low-velocity impact of sandwich composite plates. Exp Mech 44:574–583CrossRef Gustin J, Mahinfalah M, Nakhaie Jazar G, Aagaah MR (2004) Low-velocity impact of sandwich composite plates. Exp Mech 44:574–583CrossRef
35.
Zurück zum Zitat Daniel IM, Abot JL, Schubel PM, Luo J-J (2012) Response and damage tolerance of composite sandwich structures under low velocity impact. Exp Mech 52:37–47CrossRef Daniel IM, Abot JL, Schubel PM, Luo J-J (2012) Response and damage tolerance of composite sandwich structures under low velocity impact. Exp Mech 52:37–47CrossRef
36.
37.
Zurück zum Zitat Taheri-Behrooz F, Shokrieh MM, Abdolvand HR (2013) Designing and manufacturing of a drop weight impact test machine. Eng Solid Mech 1:69–76CrossRef Taheri-Behrooz F, Shokrieh MM, Abdolvand HR (2013) Designing and manufacturing of a drop weight impact test machine. Eng Solid Mech 1:69–76CrossRef
38.
Zurück zum Zitat Gilbert CJ, Ritchie RO, Johnson WL (1997) Fracture toughness and fatigue-crack propagation in a Zr-Ti-Ni-Cu-Be bulk metallic glass. Appl Phys Lett 71:476–478CrossRef Gilbert CJ, Ritchie RO, Johnson WL (1997) Fracture toughness and fatigue-crack propagation in a Zr-Ti-Ni-Cu-Be bulk metallic glass. Appl Phys Lett 71:476–478CrossRef
39.
Zurück zum Zitat Atkins AG, Lee CS, Caddell RM (1975) Time-temperature dependent fracture toughness of PMMA. J Mater Sci 10:1394–1404CrossRef Atkins AG, Lee CS, Caddell RM (1975) Time-temperature dependent fracture toughness of PMMA. J Mater Sci 10:1394–1404CrossRef
40.
Zurück zum Zitat Fernie R, Warrior NA (2002) Impact test rigs for high strain rate tensile and compressive testing of composite materials. Strain 38:69–73CrossRef Fernie R, Warrior NA (2002) Impact test rigs for high strain rate tensile and compressive testing of composite materials. Strain 38:69–73CrossRef
41.
Zurück zum Zitat Chan JJ (2009) Design of fixtures and specimens for high strain-rate tensile testing on a drop tower. BSc thesis, Massachusetts Institute of Technology Chan JJ (2009) Design of fixtures and specimens for high strain-rate tensile testing on a drop tower. BSc thesis, Massachusetts Institute of Technology
42.
Zurück zum Zitat Reedlunn B, Daly S, Hector L Jr, Zavattieri P, Shaw J (2013) Tips and tricks for characterizing shape memory wire part 5: Full-field strain measurement by digital image correlation. Exp Techniques 37:62–78CrossRef Reedlunn B, Daly S, Hector L Jr, Zavattieri P, Shaw J (2013) Tips and tricks for characterizing shape memory wire part 5: Full-field strain measurement by digital image correlation. Exp Techniques 37:62–78CrossRef
43.
Zurück zum Zitat ASTM standard E8/E8M (2009) Standard test methods for tension testing of metallic materials ASTM standard E8/E8M (2009) Standard test methods for tension testing of metallic materials
45.
Zurück zum Zitat Kobayashi T, Toda H, Masuda T (2002) Analysis of test data obtained from Charpy V and impact tensile test. ESIS Publ 30:173–180 Kobayashi T, Toda H, Masuda T (2002) Analysis of test data obtained from Charpy V and impact tensile test. ESIS Publ 30:173–180
46.
Zurück zum Zitat Smart Aircraft in Emergency Situations (SMAES), FP7-AAT-2010-RTD-1, 2011–2014, Deliverable 4.10 ‘Data on T4.2 material characterization tests and material model information’ Smart Aircraft in Emergency Situations (SMAES), FP7-AAT-2010-RTD-1, 2011–2014, Deliverable 4.10 ‘Data on T4.2 material characterization tests and material model information’
47.
48.
Zurück zum Zitat LS-DYNA (2006) Theory manual, Livermore Software Technology Corporation LS-DYNA (2006) Theory manual, Livermore Software Technology Corporation
49.
Zurück zum Zitat Chang FK, Chang KY (1987) A progressive damage model for laminated composites containing stress concentrations. J Compos Mater 21:834–855CrossRef Chang FK, Chang KY (1987) A progressive damage model for laminated composites containing stress concentrations. J Compos Mater 21:834–855CrossRef
50.
Zurück zum Zitat Avallone EA, Baumeister T, Sadegh AM (2007) Marks’ standard handbook for mechanical engineers, 11th edn. Mc Graw Hill, New York Avallone EA, Baumeister T, Sadegh AM (2007) Marks’ standard handbook for mechanical engineers, 11th edn. Mc Graw Hill, New York
51.
Zurück zum Zitat Sahraoui S, Lataillade JL (1998) Analysis of load oscillations in instrumented impact testing. Eng Fract Mech 60:437–446CrossRef Sahraoui S, Lataillade JL (1998) Analysis of load oscillations in instrumented impact testing. Eng Fract Mech 60:437–446CrossRef
52.
Zurück zum Zitat Fujii Y (2003) Proposal for a step response evaluation method for force transducers. Meas Sci Technol 14:1741–1746CrossRef Fujii Y (2003) Proposal for a step response evaluation method for force transducers. Meas Sci Technol 14:1741–1746CrossRef
53.
Zurück zum Zitat Ahn SJ, Jeong WB, Yoo WS (2004) An estimation of error-free frequency response function from impact hammer testing. JSME Int J C-Mech Sy 47:852–857CrossRef Ahn SJ, Jeong WB, Yoo WS (2004) An estimation of error-free frequency response function from impact hammer testing. JSME Int J C-Mech Sy 47:852–857CrossRef
54.
Zurück zum Zitat Found MS, Howard IC, Paran AP (1998) Interpretation of signals from dropweight impact tests. Compos Struct 42:353–363CrossRef Found MS, Howard IC, Paran AP (1998) Interpretation of signals from dropweight impact tests. Compos Struct 42:353–363CrossRef
55.
Zurück zum Zitat Zhu D, Gencoglu M, Mobasher B (2009) Low velocity flexural impact behavior of AR glass fabric reinforced cement composites. Cem Concr Comp 31:379–387CrossRef Zhu D, Gencoglu M, Mobasher B (2009) Low velocity flexural impact behavior of AR glass fabric reinforced cement composites. Cem Concr Comp 31:379–387CrossRef
56.
Zurück zum Zitat SAE Standard J2749 (2008) High strain rate tensile testing of polymers SAE Standard J2749 (2008) High strain rate tensile testing of polymers
57.
Zurück zum Zitat Yan B, Kuriyama Y, Uenishi A, Cornette D et al (2006) Recommended practice for dynamic testing for sheet steels - development and round robin tests. SAE. doi:10.4271/2006-01-0120 Yan B, Kuriyama Y, Uenishi A, Cornette D et al (2006) Recommended practice for dynamic testing for sheet steels - development and round robin tests. SAE. doi:10.​4271/​2006-01-0120
58.
Zurück zum Zitat Wagoner MP, Buttlar WG, Paulino GH (2005) Disk-shaped compact tension test for asphalt concrete fracture. Exp Mech 45:270–277CrossRef Wagoner MP, Buttlar WG, Paulino GH (2005) Disk-shaped compact tension test for asphalt concrete fracture. Exp Mech 45:270–277CrossRef
59.
Zurück zum Zitat Ayatollahi MR, Aliha MRM (2009) Analysis of a new specimen for mixed mode fracture tests on brittle materials. Eng Fract Mech 76:1563–1573CrossRef Ayatollahi MR, Aliha MRM (2009) Analysis of a new specimen for mixed mode fracture tests on brittle materials. Eng Fract Mech 76:1563–1573CrossRef
60.
Zurück zum Zitat ASTM Standard D5961 (2003) Standard test method for bearing response of polymer matrix composite laminates ASTM Standard D5961 (2003) Standard test method for bearing response of polymer matrix composite laminates
61.
Zurück zum Zitat Tao H, Zavattieri PD, Hector LG Jr, Tong W (2010) Mode I fracture at spot welds in dual-phase steel: an application of reverse digital image correlation. Exp Mech 50:1199–1212CrossRef Tao H, Zavattieri PD, Hector LG Jr, Tong W (2010) Mode I fracture at spot welds in dual-phase steel: an application of reverse digital image correlation. Exp Mech 50:1199–1212CrossRef
62.
Zurück zum Zitat Marya M, Wang K, Hector LG Jr, Gayden X (2006) Tensile-shear forces and fracture modes in single and multiple weld specimens in dual-phase steels. J Manuf Sci Eng-T ASME 128:287–298CrossRef Marya M, Wang K, Hector LG Jr, Gayden X (2006) Tensile-shear forces and fracture modes in single and multiple weld specimens in dual-phase steels. J Manuf Sci Eng-T ASME 128:287–298CrossRef
Metadaten
Titel
Drop Tower Adaptation for Medium Strain Rate Tensile Testing
verfasst von
N. Perogamvros
T. Mitropoulos
G. Lampeas
Publikationsdatum
23.11.2015
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 3/2016
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-015-0112-3

Weitere Artikel der Ausgabe 3/2016

Experimental Mechanics 3/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.