Skip to main content
Erschienen in: Landscape and Ecological Engineering 1/2008

01.05.2008 | Original Paper

Estimation of leaf area index and canopy openness in broad-leaved forest using an airborne laser scanner in comparison with high-resolution near-infrared digital photography

verfasst von: Takeshi Sasaki, Junichi Imanishi, Keiko Ioki, Yukihiro Morimoto, Katsunori Kitada

Erschienen in: Landscape and Ecological Engineering | Ausgabe 1/2008

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We estimated leaf area index (LAI) and canopy openness of broad-leaved forest using discrete return and small-footprint airborne laser scanner (ALS) data. We tested four ALS variables, including two newly proposed ones, using three echo types (first, last, and only) and three classes (ground, vegetation, and upper vegetation), and compared the accuracy by means of correlation and regression analysis with seven conventional vegetation indices derived from simultaneously acquired high-resolution near-infrared digital photographs. Among the ALS variables, the ratio of the “only-and-ground” pulse to “only” pulse (OGF) was the best estimator of both LAI (adjusted R 2 = 0.797) and canopy openness (adjusted R 2 = 0.832), followed by the ratio of the pulses that reached the ground to projected lasers (GF). Among the vegetation indices, the normalized differential vegetation index (NDVI) was the best estimator of both LAI (adjusted R 2 = 0.791) and canopy openness (adjusted R 2 = 0.764). Resampling analysis on ALS data to examine whether the estimation of LAI and canopy openness was possible with lower point densities revealed that GF maintained a high adjusted R 2 until a fairly low density of about 0.226 points/m2, while OGF performed marginally when the point density was reduced to about 1 point/m2, the standard density of high-density products on the market as of February 2008. Consequently, the ALS variables proposed in the present study, GF and OGF, seemed to have great potential to estimate LAI and canopy openness of broad-leaved forest, with accuracy comparable to NDVI, from high-resolution near-infrared imagery.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Carlson TN, Ripley DA (1997) On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens Environ 62:241–251CrossRef Carlson TN, Ripley DA (1997) On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens Environ 62:241–251CrossRef
Zurück zum Zitat Carreiras JMB, Pereira JMC, Pereira JS (2006) Estimation of tree canopy cover in evergreen oak woodlands using remote sensing. Forest Ecol Manag 224:45–53CrossRef Carreiras JMB, Pereira JMC, Pereira JS (2006) Estimation of tree canopy cover in evergreen oak woodlands using remote sensing. Forest Ecol Manag 224:45–53CrossRef
Zurück zum Zitat Chen JM, Cihlar J (1996) Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote Sens Environ 55:153–162CrossRef Chen JM, Cihlar J (1996) Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote Sens Environ 55:153–162CrossRef
Zurück zum Zitat Cohen WB, Maiersperger TK, Gower ST, Turner DP (2003) An improved strategy for regression of biophysical variables and Landsat ETM+ data. Remote Sens Environ 84:561–571CrossRef Cohen WB, Maiersperger TK, Gower ST, Turner DP (2003) An improved strategy for regression of biophysical variables and Landsat ETM+ data. Remote Sens Environ 84:561–571CrossRef
Zurück zum Zitat Colombo R, Bellingeri D, Fasolini D, Marino CM (2003) Retrieval of leaf area index in different vegetation types using high resolution satellite data. Remote Sens Environ 86:120–131CrossRef Colombo R, Bellingeri D, Fasolini D, Marino CM (2003) Retrieval of leaf area index in different vegetation types using high resolution satellite data. Remote Sens Environ 86:120–131CrossRef
Zurück zum Zitat Frazer GW, Canham CD, Lertzman KP (1999) Gap Light Analyzer (GLA) Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, Users Manual and Program Documentation, Version 2.0. Simon Fraser University, Burnaby, British Columbia, CANADA, and Institute of Ecosystem Studies, Millbrook Frazer GW, Canham CD, Lertzman KP (1999) Gap Light Analyzer (GLA) Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, Users Manual and Program Documentation, Version 2.0. Simon Fraser University, Burnaby, British Columbia, CANADA, and Institute of Ecosystem Studies, Millbrook
Zurück zum Zitat Hoshi N, Tatsuhara S, Abe N (2001) Estimation of leaf area index in natural deciduous broad-leaved forests using Landsat TM data. J Jpn For Soc 83:315–321 (in Japanese with English abstract) Hoshi N, Tatsuhara S, Abe N (2001) Estimation of leaf area index in natural deciduous broad-leaved forests using Landsat TM data. J Jpn For Soc 83:315–321 (in Japanese with English abstract)
Zurück zum Zitat Huete AR (1988) A soil adjusted vegetation index (SAVI). Remote Sens Environ 25:295–309CrossRef Huete AR (1988) A soil adjusted vegetation index (SAVI). Remote Sens Environ 25:295–309CrossRef
Zurück zum Zitat Jonckheere I, Fleck S, Nackaerts K, Muys B, Coppin P, Weiss M, Baret F (2004) Review of methods for in situ leaf area index determination: Part I. Theories, sensors and hemispherical photography. Agric For Meteorol 121:19–35CrossRef Jonckheere I, Fleck S, Nackaerts K, Muys B, Coppin P, Weiss M, Baret F (2004) Review of methods for in situ leaf area index determination: Part I. Theories, sensors and hemispherical photography. Agric For Meteorol 121:19–35CrossRef
Zurück zum Zitat Jordan CF (1969) Derivation of leaf area index from quality of light on the forest floor. Ecology 50:663–666CrossRef Jordan CF (1969) Derivation of leaf area index from quality of light on the forest floor. Ecology 50:663–666CrossRef
Zurück zum Zitat Kusakabe T, Tsuzuki H, Sueda T (2006) Long-range estimation of leaf area index using airborne laser altimetry in Siberian Boreal forest. J Jpn For Soc 88:21–29 (in Japanese with English abstract)CrossRef Kusakabe T, Tsuzuki H, Sueda T (2006) Long-range estimation of leaf area index using airborne laser altimetry in Siberian Boreal forest. J Jpn For Soc 88:21–29 (in Japanese with English abstract)CrossRef
Zurück zum Zitat Lefsky MA, Hudak AT, Cohen WB, Acker SA (2005) Geographic variability in lidar predictions of forest stand structure in the Pacific Northwest. Remote Sens Environ 95:532–548CrossRef Lefsky MA, Hudak AT, Cohen WB, Acker SA (2005) Geographic variability in lidar predictions of forest stand structure in the Pacific Northwest. Remote Sens Environ 95:532–548CrossRef
Zurück zum Zitat Maltamo M, Eerikainen K, Pitkanen J, Hyyppa J, Vehmas M (2004) Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions. Remote Sens Environ 90:319–330CrossRef Maltamo M, Eerikainen K, Pitkanen J, Hyyppa J, Vehmas M (2004) Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions. Remote Sens Environ 90:319–330CrossRef
Zurück zum Zitat Morsdorf F, Kotz B, Meier E, Itten KI, Allgower B (2006) Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction. Remote Sens Environ 104:50–61CrossRef Morsdorf F, Kotz B, Meier E, Itten KI, Allgower B (2006) Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction. Remote Sens Environ 104:50–61CrossRef
Zurück zum Zitat Muraoka H, Koizumi H (2005) Photosynthetic and structural characteristics of canopy and shrub trees in a cool-temperate deciduous broadleaved forest. Agric For Methodol 134:39–59CrossRef Muraoka H, Koizumi H (2005) Photosynthetic and structural characteristics of canopy and shrub trees in a cool-temperate deciduous broadleaved forest. Agric For Methodol 134:39–59CrossRef
Zurück zum Zitat Naesset (1997) Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens Environ 61:246–253CrossRef Naesset (1997) Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens Environ 61:246–253CrossRef
Zurück zum Zitat Nakamura A, Morimoto Y, Mizutani Y (2005) Adaptive management approach to increasing the diversity of a 30-year-old planted forest in an urban area of Japan. Landsc Urban Plan 70:291–300CrossRef Nakamura A, Morimoto Y, Mizutani Y (2005) Adaptive management approach to increasing the diversity of a 30-year-old planted forest in an urban area of Japan. Landsc Urban Plan 70:291–300CrossRef
Zurück zum Zitat Nemani RR, Running SW (1989) Testing a theoretical climate-soil-leaf area hydrologic equilibrium of forests using satellite data and ecosystem simulation. Agric For Methodol 44:245–260CrossRef Nemani RR, Running SW (1989) Testing a theoretical climate-soil-leaf area hydrologic equilibrium of forests using satellite data and ecosystem simulation. Agric For Methodol 44:245–260CrossRef
Zurück zum Zitat Pearson RL, Miller LD (1972) Remote sensing of standing crop biomass for estimation of the productivity of the short-grass prairie, Pawnee National Grasslands, Colorado. In: Proceeding of the 8th international symposium on remote sens. of environ. ERIM, Ann Arbor, pp 1357–1381 Pearson RL, Miller LD (1972) Remote sensing of standing crop biomass for estimation of the productivity of the short-grass prairie, Pawnee National Grasslands, Colorado. In: Proceeding of the 8th international symposium on remote sens. of environ. ERIM, Ann Arbor, pp 1357–1381
Zurück zum Zitat Qi J, Chehbouni A, Huete AR, Kerr YH, Sorooshian S (1994) A modified soil adjusted vegetation index (MSAVI). Remote Sens Environ 48:119–126CrossRef Qi J, Chehbouni A, Huete AR, Kerr YH, Sorooshian S (1994) A modified soil adjusted vegetation index (MSAVI). Remote Sens Environ 48:119–126CrossRef
Zurück zum Zitat Riano D, Valladares F, Condes S, Chuvieco E (2004) Estimation of leaf area index and covered ground from airborne laser scanner (Lidar) in two contrasting forests. Agric For Methodol 124:269–275CrossRef Riano D, Valladares F, Condes S, Chuvieco E (2004) Estimation of leaf area index and covered ground from airborne laser scanner (Lidar) in two contrasting forests. Agric For Methodol 124:269–275CrossRef
Zurück zum Zitat Rondeaux G, Steven M, Varet F (1996) Optimization of soil-adjusted vegetation indices. Remote Sens Environ 55:95–107CrossRef Rondeaux G, Steven M, Varet F (1996) Optimization of soil-adjusted vegetation indices. Remote Sens Environ 55:95–107CrossRef
Zurück zum Zitat Roujean JL, Breo FM (1995) Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens Environ 51:375–384CrossRef Roujean JL, Breo FM (1995) Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens Environ 51:375–384CrossRef
Zurück zum Zitat Rouse JW, Haas RH, Schell JA, Deering DW, Harlan JC (1974) Monitoring the vernal advancement of retrogradation of natural vegetation, NASA/GSFC, Type III, Final Report, Greenbelt, pp 371 Rouse JW, Haas RH, Schell JA, Deering DW, Harlan JC (1974) Monitoring the vernal advancement of retrogradation of natural vegetation, NASA/GSFC, Type III, Final Report, Greenbelt, pp 371
Zurück zum Zitat Sasaki T, Morimoto Y, Imanishi J (2007) The stand structure and soil properties of the forested area in a large scale reclamation site for 30 years after construction. J Jpn Inst Landsc Arch 70(5):413–418 (in Japanese with English abstract) Sasaki T, Morimoto Y, Imanishi J (2007) The stand structure and soil properties of the forested area in a large scale reclamation site for 30 years after construction. J Jpn Inst Landsc Arch 70(5):413–418 (in Japanese with English abstract)
Zurück zum Zitat Satake Y, Hara H, Watari S, Tominari T (1989) Wild flowers of Japan: woody plants I and II, 1st edn. Heibonsha, Tokyo Satake Y, Hara H, Watari S, Tominari T (1989) Wild flowers of Japan: woody plants I and II, 1st edn. Heibonsha, Tokyo
Zurück zum Zitat Setojima M, Akamatsu Y, Funabashi M, Imai Y, Amano M (2002) Measurement of forest area by airborne laser scanner and its applicability. J Jpn Soc Photogram Renote Sens 41(2):15–26 (in Japanese with English abstract) Setojima M, Akamatsu Y, Funabashi M, Imai Y, Amano M (2002) Measurement of forest area by airborne laser scanner and its applicability. J Jpn Soc Photogram Renote Sens 41(2):15–26 (in Japanese with English abstract)
Zurück zum Zitat Spanner MA, Pierce LL, Running SW, Peterson DL (1990) The seasonality of AVHRR data of temperate coniferous forests: relationship with leaf area index. Remote Sens Environ 33:97–112CrossRef Spanner MA, Pierce LL, Running SW, Peterson DL (1990) The seasonality of AVHRR data of temperate coniferous forests: relationship with leaf area index. Remote Sens Environ 33:97–112CrossRef
Zurück zum Zitat Weiss M, Baret F, Smith GJ, Jonckheere I, Coppin P (2004) Review of methods for in situ leaf area index determination: part II. Estimation of LAI, errors and sampling. Agric For Meteorol 121:37–53CrossRef Weiss M, Baret F, Smith GJ, Jonckheere I, Coppin P (2004) Review of methods for in situ leaf area index determination: part II. Estimation of LAI, errors and sampling. Agric For Meteorol 121:37–53CrossRef
Metadaten
Titel
Estimation of leaf area index and canopy openness in broad-leaved forest using an airborne laser scanner in comparison with high-resolution near-infrared digital photography
verfasst von
Takeshi Sasaki
Junichi Imanishi
Keiko Ioki
Yukihiro Morimoto
Katsunori Kitada
Publikationsdatum
01.05.2008
Verlag
Springer Japan
Erschienen in
Landscape and Ecological Engineering / Ausgabe 1/2008
Print ISSN: 1860-1871
Elektronische ISSN: 1860-188X
DOI
https://doi.org/10.1007/s11355-008-0041-8

Weitere Artikel der Ausgabe 1/2008

Landscape and Ecological Engineering 1/2008 Zur Ausgabe