Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 11/2007

01.11.2007 | Special Issue

Fluid-dynamic optimality in the generation-averaged length-to-diameter ratio of the human bronchial tree

verfasst von: Jin W. Lee, Min Y. Kang, Hoe J. Yang, Eugene Lee

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 11/2007

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It is shown in this paper that the nearly constant length-to-diameter ratio observed with conducting airways of human bronchial tree can be explained based on the fluid dynamic optimality principle. In any branched tube there are two pressure loss mechanisms, one for wall friction in the tube section and the other for flow division in the branching section, and there exists an optimal length-to-diameter ratio which minimizes the total pressure loss for a branched tube in laminar flow condition. The optimal length-to-diameter ratio predicted by the pressure loss minimization shows an excellent agreement with the length-to-diameter ratios found in the human conducting airways.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dankelman J, Cornelissen AJ, Large J, VanBavel E, Spaan JA (2007) Relation between branching patterns and perfusion in stochastic generated coronary arterial trees. Med Biol Eng Comput 45:25–34CrossRef Dankelman J, Cornelissen AJ, Large J, VanBavel E, Spaan JA (2007) Relation between branching patterns and perfusion in stochastic generated coronary arterial trees. Med Biol Eng Comput 45:25–34CrossRef
2.
Zurück zum Zitat Flaaris JJ, Volden M, Haase J, Ostergaard LR (2004) Method for modeling cerebral blood vessels and their bifurcations using circular, homogeneous, generalized cylinders. Med Biol Eng Comput 42:171–177CrossRef Flaaris JJ, Volden M, Haase J, Ostergaard LR (2004) Method for modeling cerebral blood vessels and their bifurcations using circular, homogeneous, generalized cylinders. Med Biol Eng Comput 42:171–177CrossRef
3.
Zurück zum Zitat Horsfield K, Cumming G (1967) Angles of branching and diameters of branches in the human bronchial tree. Bull Math Biophys 29:245–259CrossRef Horsfield K, Cumming G (1967) Angles of branching and diameters of branches in the human bronchial tree. Bull Math Biophys 29:245–259CrossRef
4.
Zurück zum Zitat Horsfield K, Cumming G (1968) Morphology of the bronchial tree in man. J Appl Physiol 24(3):373–383 Horsfield K, Cumming G (1968) Morphology of the bronchial tree in man. J Appl Physiol 24(3):373–383
5.
Zurück zum Zitat Isaby D, Chang HK (1981) Steady and unsteady pressure flow relationships in central airways. J Appl Physiol 51:1338–1348 Isaby D, Chang HK (1981) Steady and unsteady pressure flow relationships in central airways. J Appl Physiol 51:1338–1348
6.
Zurück zum Zitat Ito H, Imai K (1973) Energy losses at 90 degree pipe junctions. Proc ASCE J Hydraulics Div 99:1353–1368 Ito H, Imai K (1973) Energy losses at 90 degree pipe junctions. Proc ASCE J Hydraulics Div 99:1353–1368
7.
Zurück zum Zitat Jamison DK, Villemonte JR (1971) Junction losses in laminar and transitional flows. Proc ASCE J Hydraulics Div 97(HY7):1045–1063 Jamison DK, Villemonte JR (1971) Junction losses in laminar and transitional flows. Proc ASCE J Hydraulics Div 97(HY7):1045–1063
8.
Zurück zum Zitat Liu Y, So RMC, Zhang CH (2002) Modeling the bifurcating flow in a human lung airway. J Biomech 35:465–473CrossRef Liu Y, So RMC, Zhang CH (2002) Modeling the bifurcating flow in a human lung airway. J Biomech 35:465–473CrossRef
9.
Zurück zum Zitat Miller DS (1971) Internal flow. A guide to losses in pipe and duct systems. British Hydromechanics Research Association, Cranfield Miller DS (1971) Internal flow. A guide to losses in pipe and duct systems. British Hydromechanics Research Association, Cranfield
10.
Zurück zum Zitat Phalen RF, Yeh HC, Schum GM, Raabe OG (1978) Application of an idealized model to morphometry of the mammalian tracheobronchial tree. Anat Rec 190:167–176CrossRef Phalen RF, Yeh HC, Schum GM, Raabe OG (1978) Application of an idealized model to morphometry of the mammalian tracheobronchial tree. Anat Rec 190:167–176CrossRef
11.
Zurück zum Zitat Phillips CG, Kaye SR, Schroter RC (1994) A diameter-based reconstruction of the branching pattern of the human bronchial tree. Respir Physiol 98:193–217CrossRef Phillips CG, Kaye SR, Schroter RC (1994) A diameter-based reconstruction of the branching pattern of the human bronchial tree. Respir Physiol 98:193–217CrossRef
12.
Zurück zum Zitat Phillips CG, Kaye SR (1995) Diameter-based analysis of the branching geometry of four mammalian bronchial trees. Respir Physiol 102:303–316CrossRef Phillips CG, Kaye SR (1995) Diameter-based analysis of the branching geometry of four mammalian bronchial trees. Respir Physiol 102:303–316CrossRef
13.
Zurück zum Zitat Rashevsky N (1960) Mathematical biophysics, vol 2, chapter XXVII. Dover Publications Inc., New York, pp 292–305 Rashevsky N (1960) Mathematical biophysics, vol 2, chapter XXVII. Dover Publications Inc., New York, pp 292–305
14.
Zurück zum Zitat Ward-Smith AJ (1980) Internal fluid flow the fluid dynamics of flow in pipes and ducts, Chapter J. Oxford University Press, New York Ward-Smith AJ (1980) Internal fluid flow the fluid dynamics of flow in pipes and ducts, Chapter J. Oxford University Press, New York
15.
Zurück zum Zitat Weibel ER (1963) Morphometry of the human lung. Academic, New York Weibel ER (1963) Morphometry of the human lung. Academic, New York
16.
Zurück zum Zitat Zamir M (1976) Optimality principles in arterial branching. J Theor Biol 62:227–251CrossRef Zamir M (1976) Optimality principles in arterial branching. J Theor Biol 62:227–251CrossRef
Metadaten
Titel
Fluid-dynamic optimality in the generation-averaged length-to-diameter ratio of the human bronchial tree
verfasst von
Jin W. Lee
Min Y. Kang
Hoe J. Yang
Eugene Lee
Publikationsdatum
01.11.2007
Verlag
Springer-Verlag
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 11/2007
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-007-0232-8

Weitere Artikel der Ausgabe 11/2007

Medical & Biological Engineering & Computing 11/2007 Zur Ausgabe

Premium Partner