Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 6/2013

01.06.2013 | Original Article

Experimental parameter identification of a multi-scale musculoskeletal model controlled by electrical stimulation: application to patients with spinal cord injury

verfasst von: Mourad Benoussaad, Philippe Poignet, Mitsuhiro Hayashibe, Christine Azevedo-Coste, Charles Fattal, David Guiraud

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 6/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We investigated the parameter identification of a multi-scale physiological model of skeletal muscle, based on Huxley’s formulation. We focused particularly on the knee joint controlled by quadriceps muscles under electrical stimulation (ES) in subjects with a complete spinal cord injury. A noninvasive and in vivo identification protocol was thus applied through surface stimulation in nine subjects and through neural stimulation in one ES-implanted subject. The identification protocol included initial identification steps, which are adaptations of existing identification techniques to estimate most of the parameters of our model. Then we applied an original and safer identification protocol in dynamic conditions, which required resolution of a nonlinear programming (NLP) problem to identify the serial element stiffness of quadriceps. Each identification step and cross validation of the estimated model in dynamic condition were evaluated through a quadratic error criterion. The results highlighted good accuracy, the efficiency of the identification protocol and the ability of the estimated model to predict the subject-specific behavior of the musculoskeletal system. From the comparison of parameter values between subjects, we discussed and explored the inter-subject variability of parameters in order to select parameters that have to be identified in each patient.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
This algorithm is based on trust-region method, which uses an approximation of the objective function with a simpler one in the neighborhood around the current variable, called the trust region [31]. For the implementation, Matlab optimization tools were used through the “fmincon” function.
 
Literatur
1.
Zurück zum Zitat Benoussaad M, Hayashibe M, Fattal C, Poignet P, Guiraud D (2009) Identification and validation of FES physiological musculoskeletal model in paraplegic subjects. In: 31st annual international conference of the IEEE engineering in medicine and biology society, pp 6538–6541 Benoussaad M, Hayashibe M, Fattal C, Poignet P, Guiraud D (2009) Identification and validation of FES physiological musculoskeletal model in paraplegic subjects. In: 31st annual international conference of the IEEE engineering in medicine and biology society, pp 6538–6541
2.
Zurück zum Zitat Benoussaad M, Poignet P, Guiraud D (2008) Optimal functional electrical stimulation patterns synthesis for knee joint control. In: Intelligent robots and systems IROS. IEEE/RSJ international conference on Nice pp 2386–2391. doi:10.1109/IROS.2008.4651112 Benoussaad M, Poignet P, Guiraud D (2008) Optimal functional electrical stimulation patterns synthesis for knee joint control. In: Intelligent robots and systems IROS. IEEE/RSJ international conference on Nice pp 2386–2391. doi:10.​1109/​IROS.​2008.​4651112
3.
Zurück zum Zitat Bonnefoy A, Doriot N, Senk M, Dohin B, Pradon D, Chze L (2007) A non-invasive protocol to determine the personalized moment arms of knee and ankle muscles. J Biomech 40:1776–1785PubMedCrossRef Bonnefoy A, Doriot N, Senk M, Dohin B, Pradon D, Chze L (2007) A non-invasive protocol to determine the personalized moment arms of knee and ankle muscles. J Biomech 40:1776–1785PubMedCrossRef
4.
Zurück zum Zitat Chae J, Kilgore K, Triolo R, Creasey G, DiMarco A (2004) Functional neuromuscular stimulation. In: DeLisa J, Gans D (eds) Rehabilitation medicine: principles and practice, 4th edn. Philadelphia, J. B. Lippincott Company, pp 1405–1425 Chae J, Kilgore K, Triolo R, Creasey G, DiMarco A (2004) Functional neuromuscular stimulation. In: DeLisa J, Gans D (eds) Rehabilitation medicine: principles and practice, 4th edn. Philadelphia, J. B. Lippincott Company, pp 1405–1425
5.
Zurück zum Zitat Chang YW, Su FC, Wu HW, An K N (1999) Optimum length of muscle contraction. Clin Biomech (Bristol, Avon) 14:537–542CrossRef Chang YW, Su FC, Wu HW, An K N (1999) Optimum length of muscle contraction. Clin Biomech (Bristol, Avon) 14:537–542CrossRef
6.
Zurück zum Zitat Chia TL, Chow PC, Chizeck HJ (1991) Recursive parameter identification of constrained systems: an application to electrically stimulated muscle. IEEE Trans Biomed Eng 38:429–442. doi:10.1109/10.81562 PubMedCrossRef Chia TL, Chow PC, Chizeck HJ (1991) Recursive parameter identification of constrained systems: an application to electrically stimulated muscle. IEEE Trans Biomed Eng 38:429–442. doi:10.​1109/​10.​81562 PubMedCrossRef
7.
Zurück zum Zitat Chizeck HJ, Chang S, Stein RB, Scheiner A, Ferencz DC (1999) Identification of electrically stimulated quadriceps muscles in paraplegic subjects. IEEE Trans Biomed Eng 46:51–61PubMedCrossRef Chizeck HJ, Chang S, Stein RB, Scheiner A, Ferencz DC (1999) Identification of electrically stimulated quadriceps muscles in paraplegic subjects. IEEE Trans Biomed Eng 46:51–61PubMedCrossRef
8.
Zurück zum Zitat Cook C, McDonagh M (1996) Measurement of muscle and tendon stiffness in man. Eur J Appl Physiol Occup Physiol 72:380–382PubMedCrossRef Cook C, McDonagh M (1996) Measurement of muscle and tendon stiffness in man. Eur J Appl Physiol Occup Physiol 72:380–382PubMedCrossRef
10.
Zurück zum Zitat Delp SL (1990) Surgery simulation: a computer graphics system to analyze and design musculoskeletal reconstructions of the lower limb. PhD thesis, Department of Mechanical Engeneering, Stanford University Delp SL (1990) Surgery simulation: a computer graphics system to analyze and design musculoskeletal reconstructions of the lower limb. PhD thesis, Department of Mechanical Engeneering, Stanford University
12.
Zurück zum Zitat Durfee WK, Palmer KI (1994) Estimation of force-activation, force–length, and force–velocity properties in isolated, electrically stimulated muscle. IEEE Trans Biomed Eng 41:205–216. doi:10.1109/10.284939 PubMedCrossRef Durfee WK, Palmer KI (1994) Estimation of force-activation, force–length, and force–velocity properties in isolated, electrically stimulated muscle. IEEE Trans Biomed Eng 41:205–216. doi:10.​1109/​10.​284939 PubMedCrossRef
13.
Zurück zum Zitat Ferrarin M, Iacuone P, Mingrino A, Frigo C, Pedotti A (1996) A dynamic model of electrically activated knee muscles in healthy and paraplegics. chap. Neuroprosthetics from Basic Research to Clinical Applications A. Pedotti, M. Ferrarin, R. Riener, and J. Quintern, Eds. Berlin, Germany: Springer-Verlag pp. 81–90 Ferrarin M, Iacuone P, Mingrino A, Frigo C, Pedotti A (1996) A dynamic model of electrically activated knee muscles in healthy and paraplegics. chap. Neuroprosthetics from Basic Research to Clinical Applications A. Pedotti, M. Ferrarin, R. Riener, and J. Quintern, Eds. Berlin, Germany: Springer-Verlag pp. 81–90
14.
Zurück zum Zitat Ferrarin M, Palazzo F, Riener R, Quintern J (2001) Model-based control of fes-induced single joint movements. IEEE Trans Rehabil Eng 9:245–257CrossRef Ferrarin M, Palazzo F, Riener R, Quintern J (2001) Model-based control of fes-induced single joint movements. IEEE Trans Rehabil Eng 9:245–257CrossRef
15.
Zurück zum Zitat Ferrarin M, Pedotti A (2000) The relationship between electrical stimulus and joint torque: a dynamic model. IEEE Trans Rehabil Eng 8:342–352PubMedCrossRef Ferrarin M, Pedotti A (2000) The relationship between electrical stimulus and joint torque: a dynamic model. IEEE Trans Rehabil Eng 8:342–352PubMedCrossRef
16.
Zurück zum Zitat Franken DH, Veltink PP, Tijsmans IR, Nijmeijer DH, Boom PH (1993) Identification of passive knee joint and shank dynamics in paraplegics using quadriceps stimulation. IEEE Trans Rehabil Eng 1:154–164CrossRef Franken DH, Veltink PP, Tijsmans IR, Nijmeijer DH, Boom PH (1993) Identification of passive knee joint and shank dynamics in paraplegics using quadriceps stimulation. IEEE Trans Rehabil Eng 1:154–164CrossRef
17.
Zurück zum Zitat Franken DH, Veltink PP, Tijsmans IR, Nijmeijer G, Boom PH (1995) Identification of quadriceps-shank dynamics using randomized interpulse interval stimulation. IEEE Trans Rehabil Eng 3:182–192CrossRef Franken DH, Veltink PP, Tijsmans IR, Nijmeijer G, Boom PH (1995) Identification of quadriceps-shank dynamics using randomized interpulse interval stimulation. IEEE Trans Rehabil Eng 3:182–192CrossRef
18.
Zurück zum Zitat Guiraud D, Stieglitz T, Koch KP, Divoux JL, Rabischong P (2006) An implantable neuroprosthesis for standing and walking in paraplegia: 5-year patient follow-up. J Neural Eng 3:268–275PubMedCrossRef Guiraud D, Stieglitz T, Koch KP, Divoux JL, Rabischong P (2006) An implantable neuroprosthesis for standing and walking in paraplegia: 5-year patient follow-up. J Neural Eng 3:268–275PubMedCrossRef
19.
Zurück zum Zitat Harkema S, Gerasimenko Y, Hodes J, Burdick J, Angeli C, Chen Y, Ferreira C, Willhite A, Rejc E, Grossman RG, Edgerton VR (2011) Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 377:1938–1947PubMedCrossRef Harkema S, Gerasimenko Y, Hodes J, Burdick J, Angeli C, Chen Y, Ferreira C, Willhite A, Rejc E, Grossman RG, Edgerton VR (2011) Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 377:1938–1947PubMedCrossRef
20.
Zurück zum Zitat Hatze H (1978) A general myocybernetic control model of skeletal muscle. Biol Cybern 28:143–157PubMedCrossRef Hatze H (1978) A general myocybernetic control model of skeletal muscle. Biol Cybern 28:143–157PubMedCrossRef
21.
Zurück zum Zitat Hatze H (1981) Myocybernetic Control Models of Skeletal Muscle. South Africa: University of South Africa Hatze H (1981) Myocybernetic Control Models of Skeletal Muscle. South Africa: University of South Africa
22.
Zurück zum Zitat Hawkins D, Hull M (1990) A method for determining lower extremity muscle-tendon lengths during flexion/extension movements. J Biomech 23:487–494PubMedCrossRef Hawkins D, Hull M (1990) A method for determining lower extremity muscle-tendon lengths during flexion/extension movements. J Biomech 23:487–494PubMedCrossRef
23.
Zurück zum Zitat Hayashibe M, Poignet P, Guiraud D, Makssoud HE (2008) Nonlinear identification of skeletal muscle dynamics with sigma-point kalman filter for model-based fes. In: 2008 IEEE international conference on robotics and automation. Pasadena, CA, USA, pp 2049–2054 Hayashibe M, Poignet P, Guiraud D, Makssoud HE (2008) Nonlinear identification of skeletal muscle dynamics with sigma-point kalman filter for model-based fes. In: 2008 IEEE international conference on robotics and automation. Pasadena, CA, USA, pp 2049–2054
24.
Zurück zum Zitat Hill A (1938) The heat of shortening and the dynamic constants of muscle. R Soc Lond Proc Ser B 126:136–195CrossRef Hill A (1938) The heat of shortening and the dynamic constants of muscle. R Soc Lond Proc Ser B 126:136–195CrossRef
25.
Zurück zum Zitat Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7:255–318PubMed Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7:255–318PubMed
26.
Zurück zum Zitat de Leva P (1996) Adjustments to Zatsiorsky–Seluyanov as segment inertia parameters. J Biomech 29:1223–1230 de Leva P (1996) Adjustments to Zatsiorsky–Seluyanov as segment inertia parameters. J Biomech 29:1223–1230
27.
Zurück zum Zitat Levy M, Mizrahi J, Susak Z (1990) Recruitment, force and fatigue characteristics of quadriceps muscles of paraplegics isometrically activated by surface functional electrical stimulation. J Biomed Eng 12:150–156. doi:10.1016/0141-5425(90)90136-B PubMedCrossRef Levy M, Mizrahi J, Susak Z (1990) Recruitment, force and fatigue characteristics of quadriceps muscles of paraplegics isometrically activated by surface functional electrical stimulation. J Biomed Eng 12:150–156. doi:10.​1016/​0141-5425(90)90136-B PubMedCrossRef
29.
Zurück zum Zitat Makssoud HE, Guiraud D, Poignet P, Hayashibe M, Wieber PB, Yoshida K, Azevedo-Coste C (2011) Multiscale modeling of skeletal muscle properties and experimental validations in isometric conditions. Biol Cybern 105:121–138. doi:10.1007/s00422-011-0445-7 PubMedCrossRef Makssoud HE, Guiraud D, Poignet P, Hayashibe M, Wieber PB, Yoshida K, Azevedo-Coste C (2011) Multiscale modeling of skeletal muscle properties and experimental validations in isometric conditions. Biol Cybern 105:121–138. doi:10.​1007/​s00422-011-0445-7 PubMedCrossRef
30.
Zurück zum Zitat Morgan DL (1977) Separation of active and passive components of short-range stiffness of muscle. Am J Physiol Cell Physiol 232:C45–C49 Morgan DL (1977) Separation of active and passive components of short-range stiffness of muscle. Am J Physiol Cell Physiol 232:C45–C49
31.
Zurück zum Zitat Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer Series in Operations Research and Financial Engineering, Springer, New York. doi:10.1007/978-0-387-40065-5 Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer Series in Operations Research and Financial Engineering, Springer, New York. doi:10.​1007/​978-0-387-40065-5
32.
Zurück zum Zitat Perreault EJ, Heckman CJ, Sandercock TG (2003) Hill muscle model errors during movement are greatest within the physiologically relevant range of motor unit firing rates. J Biomech 36:211–218PubMedCrossRef Perreault EJ, Heckman CJ, Sandercock TG (2003) Hill muscle model errors during movement are greatest within the physiologically relevant range of motor unit firing rates. J Biomech 36:211–218PubMedCrossRef
33.
Zurück zum Zitat Previdi F (2002) Identification of black-box nonlinear models for lower limb movement control using functional electrical stimulation. Control Eng Pract 10:91–99CrossRef Previdi F (2002) Identification of black-box nonlinear models for lower limb movement control using functional electrical stimulation. Control Eng Pract 10:91–99CrossRef
34.
Zurück zum Zitat Riener R, Ferrarin M, Pavan EE, Frigo CA (2000) Patient-driven control of FES-supported standing up and sittingdown: experimental results. IEEE Trans Rehabil Eng 8:523–529 Riener R, Ferrarin M, Pavan EE, Frigo CA (2000) Patient-driven control of FES-supported standing up and sittingdown: experimental results. IEEE Trans Rehabil Eng 8:523–529
37.
Zurück zum Zitat Riener R, Quintern J, Psaier E, Schmidt G (1996) Physiological based multi-input model of muscle activation. Neuroprosthetics: from basic research to clinical applications. Springer, Berlin 12:95–114 Riener R, Quintern J, Psaier E, Schmidt G (1996) Physiological based multi-input model of muscle activation. Neuroprosthetics: from basic research to clinical applications. Springer, Berlin 12:95–114
38.
Zurück zum Zitat Sapio VD, Warren J, Khatib O, Delp S (2005) Simulating the task-level control of human motion: amethodology and framework for implementation. Vis Comput 21:289–302CrossRef Sapio VD, Warren J, Khatib O, Delp S (2005) Simulating the task-level control of human motion: amethodology and framework for implementation. Vis Comput 21:289–302CrossRef
39.
Zurück zum Zitat Schauer T, Negard NO, Previdi F, Hunt K, Fraser M, Ferchland E, Raisch J (2004) Online identification and nonlinear control of the electrically stimulated quadriceps muscle. Control Eng Pract 13:1207–1219CrossRef Schauer T, Negard NO, Previdi F, Hunt K, Fraser M, Ferchland E, Raisch J (2004) Online identification and nonlinear control of the electrically stimulated quadriceps muscle. Control Eng Pract 13:1207–1219CrossRef
40.
Zurück zum Zitat Scheiner A, Stein RB, Ferencz DC, Chizeck HJ (1993) Improved models for the lower leg in paraplegics. In: Engineering in medicine and biology society, the 15th annual international conference of the IEEE, San Diego, CA, USA, pp 1151–1152 Scheiner A, Stein RB, Ferencz DC, Chizeck HJ (1993) Improved models for the lower leg in paraplegics. In: Engineering in medicine and biology society, the 15th annual international conference of the IEEE, San Diego, CA, USA, pp 1151–1152
41.
Zurück zum Zitat Shue G, Crago P E, Chizeck HJ (1995) Muscle-joint models incorporating activation dynamics, moment-angle, and moment-velocity properties. IEEE Trans Biomed Eng 42:212–223. doi:10.1109/10.341834 PubMedCrossRef Shue G, Crago P E, Chizeck HJ (1995) Muscle-joint models incorporating activation dynamics, moment-angle, and moment-velocity properties. IEEE Trans Biomed Eng 42:212–223. doi:10.​1109/​10.​341834 PubMedCrossRef
42.
Zurück zum Zitat Stein RB, Zehr EP, Lebiedowska MK, Popović DB, Scheiner A, Chizeck HJ (1996) Estimating mechanical parameters of leg segments in individuals with and without physical disabilities. IEEE Trans Rehabil Eng 4:201–211PubMedCrossRef Stein RB, Zehr EP, Lebiedowska MK, Popović DB, Scheiner A, Chizeck HJ (1996) Estimating mechanical parameters of leg segments in individuals with and without physical disabilities. IEEE Trans Rehabil Eng 4:201–211PubMedCrossRef
44.
Zurück zum Zitat Winters J (1990) Hill-based muscle models: a systems engineering perspective, chap 5. In: Winters JM, Woo SY (eds) Multiple muscle systems: biomechanics and movement organization. Springer, New York, pp 69–93 Winters J (1990) Hill-based muscle models: a systems engineering perspective, chap 5. In: Winters JM, Woo SY (eds) Multiple muscle systems: biomechanics and movement organization. Springer, New York, pp 69–93
46.
Zurück zum Zitat Zajac FE (1989) Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng 17:359–411PubMed Zajac FE (1989) Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng 17:359–411PubMed
Metadaten
Titel
Experimental parameter identification of a multi-scale musculoskeletal model controlled by electrical stimulation: application to patients with spinal cord injury
verfasst von
Mourad Benoussaad
Philippe Poignet
Mitsuhiro Hayashibe
Christine Azevedo-Coste
Charles Fattal
David Guiraud
Publikationsdatum
01.06.2013
Verlag
Springer-Verlag
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 6/2013
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-013-1032-y

Weitere Artikel der Ausgabe 6/2013

Medical & Biological Engineering & Computing 6/2013 Zur Ausgabe

Premium Partner